あなたの研究室に高品質の機器と材料を提供する、信頼できる世界規模のサプライヤー!
について
ブログ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
製品
サンプルの準備
静水圧プレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
ガラス素材
バイオ化学装置
ロータリーエバポレーター
ガラスリアクター
高圧反応器
短経路蒸留
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
知識
会社
私たちについて
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
サービスサポート
お問い合わせ
メニュー
メニューを閉じる
サンプルの準備
静水圧プレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
ガラス素材
バイオ化学装置
ロータリーエバポレーター
ガラスリアクター
高圧反応器
短経路蒸留
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
知識
ブログ
について
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
よくある質問 -
割れ防止プレス金型
成形工具はなぜ製造業に不可欠なのか?大量生産の効率と精度を引き出す
自動車や電子機器などの産業において、成形工具がいかにコスト効率に優れ、高品質でスケーラブルな製造を可能にしているかをご覧ください。
空間の不活性化とは?火災や酸化から環境を守る
不活性化がどのように酸素を除去し、火災、爆発、閉鎖空間での酸化を防ぐかを学ぶ。工業用や貯蔵用アプリケーションの安全には欠かせません。
熱処理における一般的な欠陥とその防止方法とは?
脱炭、焼入れ割れ、ソフトスポットなどの一般的な熱処理欠陥について学び、効果的な予防策を発見してください。
なぜ材料の硬度は温度とともに低下するのか?高温用途における重要な洞察
材料の硬度が温度とともに低下する理由と、高温硬度が高温用途にどのような影響を与えるかを学びます。エンジニアと材料科学者にとって不可欠な洞察です。
二段階焼結法(Tss法)とは?高性能セラミックスを高精度に実現する
二段階焼結(TSS)法により、高密度化、機械的特性の向上、エネルギー効率の向上を実現した微粒子セラミックスがどのように製造されるかをご覧ください。
不活性化とは?産業用途における熱処理と火災安全のために不可欠なもの
熱処理や安全システムにおいて、窒素やアルゴンを使用した不活性化がどのように酸化を防ぎ、火災のリスクを低減するかをご紹介します。
焼結とは?高性能材料ソリューションのための多用途プロセス
焼結がどのように粒子を耐久性のある材料に変え、特性を高め、製鉄、3Dプリンティング、セラミックなどの産業に力を与えるかをご覧ください。
熱処理の基本原理とは?焼き入れ・焼きなましを極める
熱処理の重要な原理である焼き入れと焼きなましをご覧ください。熱処理が工業用途の金属特性をどのように向上させるかを学びます。
誘導炉の消費電力を計算するには?コスト削減のためのエネルギー使用の最適化
生産能力、効率指標、およびコスト効率に優れた操業のための高度な計算式を使用した誘導炉の電力消費量の計算方法をご覧ください。
熱処理にかかる時間は?主な要因と期間について説明します。
トコジラミ、回転式管状炉、真空プロセスで熱処理時間がどのように異なるかをご覧ください。処理時間に影響する主な要因をご覧ください。
同じるつぼで異なる金属を溶解できますか?汚染リスクの回避と品質の確保
同じるつぼで異なる金属を溶かすことがなぜ危険なのか、そして金属の純度と品質を最適化するための正しいるつぼの選び方を学ぶ。
粉末冶金とは?高耐久性金属部品製造ガイド
粉末の特性、金属の選択、耐久性のある部品のための高度な技術など、粉末冶金の仕組みについて学びます。
鋳造にはどのような道具が使われていますか?鋳造工程の精度と品質に欠かせない道具
ランマー、リドル、ベントケーブルなど、鋳造に使用される主な道具を紹介し、鋳造プロジェクトの精度と品質を確保します。
押出成形の仕組み精密製造のステップバイステップガイド
プラスチック、食品、金属加工などの産業において、原材料の供給から製品の成形、仕上げに至るまで、押出成形がどのように機能するかを学びます。
加熱と焼結の違いは?材料科学における重要な洞察
加熱と焼結の違いについて、温度範囲、エネルギー効率、材料科学への応用などを探る。
4段圧延機とは?薄物精密金属加工
4段圧延機がどのようにして厳しい公差を達成し、薄い材料を製造し、自動車や航空宇宙などの産業向けに高品質の製品を提供しているかをご覧ください。
セラミック鋳造用鋳型の使い方完璧なセラミック作品を作る技術をマスターしよう
セラミック鋳造用鋳型を使い、正確かつ丁寧に、高品質で欠陥のないセラミック作品を作るためのステップ・バイ・ステップのプロセスを学びます。
射出成形に多数個取り金型を選ぶ理由効率アップとコスト削減
生産効率の向上、1個あたりのコスト削減、大量生産における安定した品質など、マルチキャビティ金型の利点をご覧ください。
射出成形用の金型はどのように作られるのか?高品質の金型を作る精密技術
CNC機械加工、放電加工、高度な技術が、射出成形用の耐久性のある精密な金型をどのように作り出すかをご覧ください。材料の選択、設計、新技術について学びます。
溶融積層造形法(Fdm)とは?手頃な価格の3Dプリンティングガイド
熱可塑性プラスチックを使用したコスト効率の高い3Dプリントプロセスである溶融積層造形法(FDM)についてご紹介します。
エクストルージョンコーティングとエクストルージョンラミネーションの違いは何ですか?
エクストルージョンコーティングとエクストルージョンラミネーションが、パッケージングや製造におけるプロセス、用途、材料特性においてどのように異なるかをご紹介します。
MoldとMould:どちらの綴りが正しいのか?地域による違いを解説
mold」と「mold」の違いを学ぶ - アメリカ英語とイギリス英語の地域的な綴りの違いを解説。
射出成形とインサート成形の違いとは?プラスチック製造に関する主な洞察
射出成形とインサート成形の違い、その用途、利点、プラスチック製造における設計上の重要な考慮点を探る。
セラミックモールド鋳造のデメリットとは?主な課題を解説
拡張性の問題、再利用不可能性、厳しい公差を達成するための課題など、セラミック金型鋳造の限界を探る。
射出成形に2プレート金型が好まれる理由とは?費用対効果と信頼性の高いソリューション
2プレート金型が射出成形の用途において、費用対効果が高く、メンテナンスが簡単で、操作しやすい選択である理由をご覧ください。
最も効率的な発熱体とは?セラミックとステンレスの比較
セラミックヒーターがエネルギー変換率96%という最も効率的な発熱体である理由と、ステンレススチールの汎用性と耐久性をご覧ください。
2プレート金型のデメリットとは?射出成形における主な課題
フローバランス、設計の柔軟性、マルチキャビティ設計における高い欠陥リスクなど、2プレート金型の限界を探る。
真空熱処理とは?高精度で優れた金属性能を実現
真空熱処理がどのように酸化を防止し、クラックを低減し、優れた結果をもたらす材料特性を向上させるかをご覧ください。
活性炭は復活できるか?再活性化のメリットを知る
再活性化によって活性炭がどのように復元され、コスト削減、環境へのメリット、産業用途での性能向上がもたらされるかをご覧ください。