製品 熱機器

熱機器

KinTek は、実験室用、パイロット生産用、工業用生産炉など、最大 3000 ℃ の温度範囲の幅広い高温炉を供給しています。 KinTek の利点の 1 つは、さまざまな加熱方法と速度、超高真空と動的真空、制御された雰囲気とガス回路、自動化された機械構造、ソフトウェアとハードウェアの開発など、特定の機能に合わせたカスタムメイドの炉を作成できることです。


熱機器


引用を要求

弊社の専門チームが 1 営業日以内にご返信いたします。 お気軽にお問い合わせ下さい!


関連記事

真空炉が材料の完全性を定義する理由:無のエンジニアリング

真空炉が材料の完全性を定義する理由:無のエンジニアリング

金属加工の完璧さの鍵が空気の不在にある理由を発見してください。真空熱処理の物理学、トレードオフ、および精度を探ります。

続きを読む
熱ではなく、雰囲気:なぜ炉がサンプルを台無しにするのか

熱ではなく、雰囲気:なぜ炉がサンプルを台無しにするのか

高温材料が失敗する本当の理由を発見してください。熱ではなく、空気そのものです。それを恒久的に修正する方法を学びましょう。

続きを読む
断熱のアーキテクチャ:チューブ炉の解剖

断熱のアーキテクチャ:チューブ炉の解剖

チューブ炉の積層エンジニアリングを探る。アルミナ断熱材から石英リアクターまで、この「熱スリーブ」がいかに精密な断熱を実現するかを理解する。

続きを読む
焼結部品が割れる本当の理由(そして、それは炉のせいではない)

焼結部品が割れる本当の理由(そして、それは炉のせいではない)

炉のせいにすることをやめましょう。部品が割れる原因となる粉末プレスにおける隠れた欠陥を発見し、コールドアイソスタティックプレス(CIP)が恒久的な解決策をどのように提供するかを学びましょう。

続きを読む
真空炉における圧力制御:空虚のアーキテクチャ

真空炉における圧力制御:空虚のアーキテクチャ

真空炉における精度は熱ではなく、空気の不在によって決まります。圧力範囲の制御が材料の完全性をどのように定義するかを探ります。

続きを読む
灰化試験が失敗する理由:マッフル炉と灰化炉の隠れた違い

灰化試験が失敗する理由:マッフル炉と灰化炉の隠れた違い

灰化結果の一貫性のなさに悩んでいませんか?(温度ではありません)重要な違いを発見し、適切な炉が精度を保証する方法をご覧ください。

続きを読む
熱の幾何学:制御か容量かの選択

熱の幾何学:制御か容量かの選択

チューブ炉とマッフル炉の重要な工学的違いを発見してください。なぜ雰囲気制御と幾何学が実験室の成功を左右するのかを学びましょう。

続きを読む
熱処理部品が破損する理由:炉内の隠れた敵

熱処理部品が破損する理由:炉内の隠れた敵

炉で一貫性のない結果が出ていませんか?熱処理における真の犯人が空気であることを学び、毎回完璧で酸化のない部品を得る方法をご覧ください。

続きを読む
孤立のアーキテクチャ:なぜ材料科学ではボリュームよりも制御が優れているのか

孤立のアーキテクチャ:なぜ材料科学ではボリュームよりも制御が優れているのか

チューブ炉がエンジニアに精密さのために選ばれる理由を発見してください。高度な材料合成における雰囲気の分離と熱均一性の重要な役割を探ります。

続きを読む
スケールを超えて:なぜ炉が部品をダメにするのか—そして簡単な解決策

スケールを超えて:なぜ炉が部品をダメにするのか—そして簡単な解決策

酸化した、一貫性のない熱処理部品にうんざりしていませんか?炉内の空気が真の問題である理由と、真空炉が決定的な解決策を提供する方法をご覧ください。

続きを読む
サイレント・バウンダリー:チューブファーネスの心臓部を工学する

サイレント・バウンダリー:チューブファーネスの心臓部を工学する

ファーネスチューブは単なる部品ではありません。それはあなたの実験の限界です。石英、アルミナ、金属の選択戦略を深く掘り下げます。

続きを読む
ろう付け接合が失敗する理由:炉の温度に関する真実とそれをマスターする方法

ろう付け接合が失敗する理由:炉の温度に関する真実とそれをマスターする方法

一貫性のないろう付け結果の根本原因を発見してください。それは炉ではなく、温度がろう材とどのように関係しているかの誤解です。

続きを読む
静かなインターフェース:電極劣化の克服

静かなインターフェース:電極劣化の克服

電極の故障はめったに突然起こるものではありません。それは怠慢の複利です。精度と寿命を維持する規律あるメンテナンスプロトコルを学びましょう。

続きを読む
熱のアーキテクチャ:実験用チューブ炉の精度を内部から探る

熱のアーキテクチャ:実験用チューブ炉の精度を内部から探る

熱電対のフィードバックループから熱均一性まで、チューブ炉の工学を探り、なぜ精度が能動的なプロセスなのかを解明します。

続きを読む
炉内の隠れた敵:熱処理部品にスケールや変色が発生する理由と、それを恒久的に解決する方法

炉内の隠れた敵:熱処理部品にスケールや変色が発生する理由と、それを恒久的に解決する方法

炉での酸化した、一貫性のない結果に悩んでいませんか? 熱ではなく空気が真の原因であることを発見し、それを恒久的に解決する方法を見つけてください。

続きを読む
真空のアーキテクチャ:真空における熱の制御

真空のアーキテクチャ:真空における熱の制御

熱は材料を変容させますが、空気はそれを腐食させます。真空炉が低圧環境を利用してろう付けや焼結における純度を確保する方法をご覧ください。

続きを読む
高温実験が失敗する理由:ほとんどのラボが見落としている炉の欠陥

高温実験が失敗する理由:ほとんどのラボが見落としている炉の欠陥

部品のひび割れや材料特性の一貫性のなさに悩んでいませんか?失敗の原因となる熱均一性の悪さなどの隠れた炉の欠陥を発見し、それらを根本的に解決する方法を見つけましょう。

続きを読む
熱の幾何学:実験用炉における容量と制御の選択

熱の幾何学:実験用炉における容量と制御の選択

マッフル炉とチューブ炉の選択は、単に温度の問題ではなく、サンプル量と雰囲気精度のどちらを優先するかという選択です。

続きを読む
ろう付け接合が失敗し続ける理由:炉内の見えない破壊者

ろう付け接合が失敗し続ける理由:炉内の見えない破壊者

一貫性のないろう付け接合に苦労していませんか?炉内の目に見えない原因、つまり雰囲気について知り、それを恒久的に修正する方法を見つけましょう。

続きを読む
制御のアーキテクチャ:熱安定性が電気化学的精度を定義する理由

制御のアーキテクチャ:熱安定性が電気化学的精度を定義する理由

3電極システムと温度制御の相互作用を理解することで、電気化学的精度をマスターしましょう。再現性を確保するために変数を排除します。

続きを読む