あなたの研究室に高品質の機器と材料を提供する、信頼できる世界規模のサプライヤー!
について
ブログ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
製品
サンプルの準備
静水圧プレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
ガラス素材
バイオ化学装置
ロータリーエバポレーター
ガラスリアクター
高圧反応器
短経路蒸留
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
知識
会社
について Kintek Solution
証明書と賞状
お客様の声
国際的な存在感
お問い合わせ
メニュー
メニューを閉じる
サンプルの準備
静水圧プレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
ガラス素材
バイオ化学装置
ロータリーエバポレーター
ガラスリアクター
高圧反応器
短経路蒸留
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
知識
ブログ
について
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
よくある質問 -
二次元振動ふるい
ハンマーミルで得られる製品サイズはどのくらいですか?正確な粒子サイズの低減を実現
調整可能なスクリーンサイズとハンマースピードで、1mm以下の製品サイズを実現するハンマーミルの方法をご覧ください。医薬品、食品加工などに最適です。
Kbrペレットを作る際に必要な試料の量は?分光分析の最適化
正確な赤外分光分析に必要なKBrペレットを調製するための理想的なサンプル量(1 mg)とKBr比(200-300 mg)について学びます。
粒径の測定にはどの手法が最適ですか?ニーズに合った適切な方法を見つける
ふるい分析、直接画像分析、SLS、DLSなど、最適な粒度分布測定技術をご覧いただき、お客様のアプリケーションに適したものをお選びください。
蛍光X線分析の粒子径は?正確な結果を得るための試料前処理の最適化
XRF 分析に最適な粒子サイズと、正確で信頼性の高い元素組成測定を確実にするための重要な表面処理のヒントについて学びます。
フィルタープレスとは?用途に合わせた精密ろ過を実現
1ミクロンから100ミクロン以上のフィルタープレスのミクロンサイズが、研究室や工業プロセスのろ過効率にどのような影響を与えるかをご覧ください。
粉末Xrd分析にはどれくらいのサンプルが必要ですか?重要な要素とガイドライン
装置のタイプ、試料の特性、およびデータ品質要件に基づいて、粉末XRD分析に必要な試料の量をご確認ください。
ハンマーミルの最大フィードサイズとは?主な要因
ハンマーミルの供給サイズが設計、材料の種類、出力サイズなどによってどのように決定されるかを学びましょう。今すぐ研削プロセスを最適化してください!
Ir分光分析用のKbrペレットはどのように準備しますか?正確な分析のためのステップバイステップガイド
正確なFTIR分析のための透明で高品質なサンプルを確保する、IR分光用のKBrペレットの調製方法をご紹介します。
IrにおけるKbrの範囲はどれくらいですか?正確なスペクトル分析のための重要な洞察をマスターする
IR 分光法における KBr の範囲 (4000 cm-¹ ~ 400 cm-¹) とその利点、限界、および信頼性の高いスペクトル分析への応用について学びます。
Ftir 分析用のサンプルを準備するために Kbr が使用されるのはなぜですか?主要なプロパティの説明
透明性、不活性、非吸湿性、ペレット形成の容易さなど、KBr が FTIR サンプル前処理に最適である理由をご確認ください。
Ftir用のKbrペレットはどのように調製するのですか?正確な分光分析のためのステップをマスターしよう
FTIR用KBrペレットの正確な調製手順を学び、適切なサンプル調製により正確で信頼性の高い分光分析を実現します。
Ftir分析用のKbrペレットはどのように調製するのですか?正確な結果を得るためのステップバイステップガイド
FTIR分析用のKBrペレットを、正確な混合、加圧、水分コントロールによって調製し、信頼性の高いスペクトル結果を得る方法をご紹介します。
遠心分離フィルターの利点は何ですか?研究室の効率と精度を向上
高速分離、サンプルロスの最小化、さまざまな用途への汎用性など、遠心分離フィルターの主な利点をご覧ください。
IrにおけるKbrと試料の比率は?正しい混合で正確なスペクトルを得る
鮮明で高品質なスペクトルを得るために、IR 分光法における KBr とサンプルの理想的な 1:100 の比率を学びます。過剰な吸収を避け、正確な結果を保証します。
Kbrペレットの圧力は?最適なIrスペクトロスコピー結果を得るために
高品質の IR 分光サンプル用の KBr ペレットとチップを調製するための推奨圧力範囲 (8 ~ 10 トン) について学びます。
なぜKbrペレットはFtirで使われるのか?主な利点と課題を説明
KBr ペレットが FTIR 分析に最適な理由、つまり IR 光に対する透明性、化学的不活性性、吸湿性を管理するためのヒントなどをご覧ください。
ダイヤモンドを検査する機械はありますか?ダイヤモンド検証のための高度なツールを発見する
熱伝導率、拡大率、高度な検出技術など、ダイヤモンドを検査するための特殊な機械や方法についてご紹介します。
Ftirの試料Kbr比とは?100:1スタンダードでスペクトルを最適化する
正確なFTIRスペクトルを得るためにKBrとサンプルの比率が100:1である理由と、高品質のペレットを調製する方法をご紹介します。
Ftirサンプル前処理にKbrを使用する理由正確な分光測定のための主な利点
赤外光に対する透明性、化学的不活性、ペレット形成の容易さ、均一なサンプル分布など、KBrがFTIRサンプル前処理に理想的な理由をご覧ください。
KbrはFtirで使用されますか? Kbr ペレットで高品質の Ir スペクトルを解き放つ
FTIR で固体サンプル分析に KBr が不可欠な理由、その利点、調製、分光法への応用をご覧ください。
Ftir分析におけるKbrと原薬の比率は?正確なスペクトル結果を得るために
鮮明で正確なFTIRスペクトルを得るには、KBrと原薬の比率を100:1にすることが重要です。信頼性の高い結果を得るための準備のヒントをご覧ください。
なぜKbrはIrで不活性なのか?正確な分光学におけるKbrの役割
KBr が IR 分光法で不活性である理由、そのイオン構造、および IR 分析でのサンプル前処理における KBr の利点について学びます。
Ftirにはどのような種類のサンプルが使用されますか?サンプルの種類と準備に関するガイド
固体、液体、気体、生体試料など、FTIR 分析に適したサンプルの種類とその前処理手法について学びます。
蛍光X線測定における粒子径の影響とは?精度と信頼性の最適化
試料の均質性、X線の透過性、測定精度など、粒子径が蛍光X線測定に与える影響をご覧ください。
マイクロXrfのサンプルサイズは?正しい前処理で分析を最適化する
マイクロXRFサンプルのサイズ、前処理方法、および正確で信頼性の高い元素分析を確実にするための主な考慮事項について学びます。
遠心分離機の仕組み分離技術完全ガイド
遠心分離の仕組み、その主要なコンポーネント、種類、研究室、医療、産業における応用について学びます。粒子と分子の正確な分離を実現します。
FtirにおけるKbrの使用とは?固体試料分析における主な利点
透明で不活性かつ信頼性の高い固体試料を調製するために、KBrがFTIR分光分析に不可欠である理由をご覧ください。
バイオマスペレットの仕様とは?品質と効率の主なパラメーター
水分と灰分、発熱量などのバイオマスペレットの仕様について学び、品質と効率を確保しましょう。
蛍光X線分析のサンプルサイズは?適切な前処理による分析の最適化
正確で信頼性の高い元素分析結果を得るためのXRFサンプルのサイズ、前処理技術、加圧負荷について学びます。
なぜKbrペレットはIrスペクトルに使用されるのか?正確なスペクトル分析のための主な利点
赤外放射に対する透明性、干渉の少なさ、固体サンプルの調製の容易さなど、KBrペレットが赤外分光に不可欠な理由をご覧ください。
Kbrペレットの用途は何ですか?正確な赤外分光分析に不可欠なツール
KBr ペレットが IR 放射に対する透明性、準備の容易さ、費用対効果を提供することで、どのようにして正確な IR 分光分析を可能にするかをご覧ください。
Kbr Ftirの欠点とは?試料調製における主な課題
汚染リスク、環境への影響、複雑な準備プロセスなど、KBr FTIR の欠点を調べます。
Ftirにおける試料調製法とは?正確な分析のための主要テクニックを探る
信頼性の高い結果を得るために、マル、ソリッドラン・イン・ソリューション、キャストフィルム、プレスドペレットなどのFTIRサンプル調製法についてご紹介します。
Xrd分析に必要な最小サンプルは何ですか?正確な結果を得るためにサンプル前処理を最適化する
XRD分析に必要な最小試料サイズ、それに影響する要因、正確な結果を得るための最適な試料調製のヒントについてご紹介します。
遠心分離機はどのように粒子を分離するのか?効率的な分離の科学を解き明かす
遠心分離機が遠心力を利用して粒子を密度、サイズ、中間粘度別に分離する方法を学びます。重要な要素と用途を発見します。
遠心分離とろ過のどちらが優れているか?ニーズに合った分離技術の選択
遠心分離と濾過の違い、その用途、そしてどちらの方法がお客様の特定の分離ニーズに適しているかをご覧ください。
ろ過に勝る遠心分離の利点とは?より速く、効率的で、多目的な分離
遠心分離がろ過よりも処理速度が速く、純度が高く、拡張性が高く、さまざまな用途でサンプル損失が最小限に抑えられる理由を発見してください。
フィルターケーキが濾過効率を高める理由とは?性能向上とコスト削減を実現
フィルターケーキが二次媒体として機能し、一次フィルターの負荷を軽減し、一貫したパフォーマンスを確保することで、どのように濾過効率を向上させるかをご覧ください。
ダイヤモンドを機械で検査できますか?高度なテクノロジーがダイヤモンドの信頼性を検証する方法をご覧ください
熱伝導率、分光法などを用いてダイヤモンドを検査し、その真正性と品質を保証する専用機の仕組みをご覧ください。
ダイヤモンド試験機は機能するのか?その精度と用途を知る
ダイヤモンド試験機が熱伝導率を利用してどのようにダイヤモンドを識別するのか、その精度、限界、宝石業界における用途についてご紹介します。
サンプルサイズに影響を与える要因とは?信頼できる結果を得るための調査デザインの最適化
研究の目的、母集団のばらつき、信頼水準、堅実な研究のための実践的な考慮事項など、サンプルサイズに影響を与える主な要因について学びます。
IrスペクトルにおけるKbrのピークは何ですか?サンプル分析におけるその役割を理解する
KBr が IR 分光法で透明である理由と、それによってサンプルの吸収バンドがどのように明確に観察されるかを学びましょう。
FtirにおけるKbrの役割とは?Kbrペレットで精密分子分析を解き明かす
KBr ペレットが透明で均質なサンプル前処理を可能にして正確な分子同定を可能にし、FTIR 分析をどのように強化するかをご覧ください。
Irに必要なサンプル量は?最適な試料調製ガイド
正確な結果を得るために、サンプルの種類、技術、装置の感度に基づいた赤外分光分析に必要なサンプルの量をご確認ください。
FtirにおけるKbrとAtrの違いは何ですか?分析に適した方法を選択する
FTIR分光法におけるKBrペレット法とATR法の主な違いについて、サンプルの前処理、感度、さまざまなサンプルタイプへの適合性などをご紹介します。
Irで使用されるペレット技術は何ですか?固体サンプル分析のガイド
赤外分光法におけるペレット技法が、正確なスペクトル分析と分子構造研究のために固体試料をどのように調製するかを学ぶ。
この Ftir 技術にはどのような制限がありますか?主な課題の説明
感度、サンプル前処理、干渉など、FTIRスペクトロスコピーの限界を探り、十分な情報に基づいた分析決定を行う。
重力によって周囲の液体から固体を分離する最も効率的な方法とは?セディメンテーションの利点
沈殿が液体から固体を分離する最も効率的な重力ベースの方法であり、低エネルギー使用と費用対効果を提供する理由をご覧ください。
ろ過と遠心分離の違いとは?効果的な分離のための重要な洞察
原理、用途、効率、装置要件など、ろ過と遠心分離の主な違いを理解します。
Kbr法とAtr法の違いは?赤外分光法の重要な洞察
サンプルの前処理、スペクトルの質、アプリケーションの柔軟性など、赤外分光法におけるKBr法とATR法の違いを探ります。
KbrとAtrの違いは何ですか?赤外分光法テクニックガイド
サンプル調製、測定原理、理想的な用途など、IR 分光法における KBr と ATR の主な違いを発見します。
Ftir測定で臭化カリウム(Kbr)を使用する目的は何ですか?正確な試料分析を可能にする
透明な赤外光の透過、サンプルの希釈、正確な分析のためにKBrがFTIR分光分析に不可欠な理由をご覧ください。
IrにおけるKbrの役割とは?正確な分光分析のための重要な洞察
透明性、安定性、非反応性を備えたKBrが、精密な化学分析のためにどのように赤外分光法を強化しているかをご覧ください。
Ir分光法のKbr法とは何ですか?固体サンプル分析のガイド
赤外分光法におけるKBr法が、どのように固体サンプルの正確で再現性の高い分析を可能にするのか、その準備、利点、応用についてご紹介します。
赤外分光法におけるKbr法とは?固体試料分析の手引き
IR 分光法における KBr メソッド、その準備、利点、固体サンプルの分析への応用について学びます。
遠心分離とろ過の力の違いは?重要な洞察を解説
関係する力、用途、操作上の考慮事項に焦点を当てて、遠心分離と濾過の主な違いを調べます。
フィルタープレスのケーキの厚さとは?ラボの効率化のためのろ過の最適化
ラボ用フィルタープレスのケーキの厚さ(10~30mm)が、ろ過効率、含水率、ケーキ除去の容易さにどのように影響するかをご覧ください。
粒子径が蛍光X線分析に与える影響適切な試料前処理で精度を最適化する
粒子サイズが XRF 分析にどのような影響を与えるかを学び、正確な結果を保証するためのサンプル前処理、キャリブレーション、基質選択のベスト プラクティスを見つけてください。
蛍光X線分析用の土壌はどのように準備しますか?正確な分析のためのステップバイステップガイド
プレスドペレットを使用した蛍光X線分析用の土壌サンプルの調製方法をご覧ください。この詳細なガイドで、正確で信頼性の高い結果を保証します。
溶液のろ過に影響を与える要因とは?ろ過プロセスの最適化
粒子の特性、濾材の特性、操作条件など、濾過効率に影響を与える主要な要因を発見します。
フィルタープレスクロスの厚さとは?適切な布厚でろ過を最適化する
最適な濾過性能を実現するために、素材、織り方、用途のニーズに基づいた理想的なフィルタープレス用布の厚さ(0.5~5mm)をご覧ください。
Kbr法の欠点とは?主な課題の説明
コンタミネーションのリスク、再現性の問題、サンプルサイズの制限など、赤外分光法におけるKBr技術の欠点を発見してください。
Ftirは定量分析に使えるか?適切なプロトコールで信頼できる結果を引き出す
サンプル前処理、キャリブレーション、高度なデータ処理などの重要な要素を含む定量分析に FTIR を使用する方法を学びます。
Kbr法とは?赤外分光分析のための固体試料調製ガイド
正確な赤外分光分析のために固体試料を調製する重要な技術であるKBr法について学びます。KBr法の利点、応用、限界についてご覧ください。
赤外分光法にはどのような種類がありますか?分子分析の主な方法を探る
FTIR、ATR、NIR などの主要な IR 分光法技術と、化学、生物学、材料科学におけるそれらの応用について学びます。
試料の前処理にはどのような手順がありますか?高精度の蛍光X線分析をマスターする
信頼性の高い結果を得るための方法の選択、バインダーの使用、エラーの最小化など、正確な XRF サンプル前処理のための重要な手順を学びます。
焼結プロセスとは?粉体を高性能材料に変える
粉末材料を熱と圧力で固体の高性能部品に変える焼結の仕組みを学びましょう。冶金、セラミック、歯科などの産業に不可欠です。
ハンマーミルはどのような産業で使用されていますか?主要セクターにおけるハンマーミルの多様性
ハンマーミルが農業、食品加工、医薬品、鉱業、リサイクルなどで効率的に材料を処理するためにどのように使用されているかをご覧ください。
蛍光X線分析に必要な試料サイズは?適切な前処理による分析の最適化
粉砕、プレス、ホモジナイズ技術など、正確な蛍光X線分析に理想的なサンプルサイズと前処理方法をご紹介します。
蛍光X線分析に適したサンプルサイズ適切な試料前処理で精度を最適化する
サンプルサイズ、前処理方法、およびキャリブレーションが XRF 分析の精度にどのように影響するかを学びます。材料の信頼できる結果を保証します。
Kbrの危険性とは?正しい取り扱いで健康を守ろう
毒性、皮膚刺激性、呼吸器への危険性、ブロミズムなど、KBrの危険性について学ぶ。重要な安全対策について学ぶ。
なぜKbrペレットがFtirに使われるのか?主な利点と用途を説明
FTIR分析にKBrペレットが不可欠な理由をご覧ください。透明性、均一性、コスト効率に優れたKBrペレットは、正確なスペクトルデータを提供します。
サンプルサイズは分析にどう影響するか?正確性と信頼性のために調査を最適化する
サンプルサイズが研究の正確性、信頼性、一般化可能性にどのように影響するかを学びます。適切なサンプルサイズを決定するための重要な要素を発見する。
サンプルサイズは測定精度にどう影響するか?データ収集戦略の最適化
サンプルサイズが測定精度にどのような影響を与えるかを学び、精度と実際の制約のバランスをとる戦略を見つけてください。
プレート&フレームフィルタープレスの産業用途とは?産業別の主な用途を探る
プレートおよびフレーム フィルター プレスが化学、食品、鉱業、廃水処理などの業界で効率的な固液分離のためにどのように使用されているかをご覧ください。
誘導炉の周波数範囲はどのくらいですか?金属溶解プロセスを最適化する
誘導炉の周波数範囲(50 Hz~400 kHz)と、それが熱浸透性、エネルギー効率、金属タイプ適合性にどのような影響を与えるかをご覧ください。
油圧システムで最も重要なメンテナンス作業は何ですか?適切な液体ケアによりシステムの信頼性を確保
なぜ作動油のメンテナンスがシステムの性能、効率、寿命にとって重要なのかを学びましょう。故障を防ぐための主なメンテナンスのヒントをご覧ください。
サンプリング準備の手順とは?正確な分析のための総合ガイド
計画から分析まで、サンプル準備の重要な手順を学び、正確な結果を得るために信頼性が高く汚染されていないサンプルを確保します。
プレスドペレット法とは?均一な試料調製へのガイド
材料科学や化学における正確な分析結果を得るために、均一で緻密なペレットを作成する方法であるプレス ペレット技術について学びます。
サンプルサイズは何に依存するのか?信頼できる調査結果を得るための重要な要素
信頼できる研究結果を確実にするために、精度、ばらつき、効果量、信頼水準、統計的検出力など、サンプルサイズに影響を与える要因について学びます。
グラフェンの大規模生産は?トップダウンとボトムアップの方法を探る
高品質でスケーラブルな結果を生み出すための道をリードする CVD による、トップダウン アプローチとボトムアップ アプローチを含む大規模なグラフェン製造方法について学びます。
誘導溶解炉の周波数とは?適切な周波数で溶解プロセスを最適化する
誘導溶解炉の周波数が加熱深さ、効率、精密冶金プロセスの用途適合性にどのような影響を与えるかを学びます。
ハンマーミルはどこで使われていますか?各産業における重要な用途
農業、リサイクル、鉱業、バイオマス、製薬などにおけるハンマーミルの多様な用途をご覧ください。効率性と汎用性をどのように確保するかを学びましょう。
Ir用Kbrペレットを調製する前に、乳鉢と乳棒を何で洗浄すべきか?適切な洗浄で正確な結果を得る
KBrペレット調製用の乳鉢と乳棒を洗浄するための最適な溶剤と手順について学び、コンタミネーションのないIRスペクトロスコピーの結果を保証します。
セラミックスの一軸プレスとは?高品質セラミック製造ガイド
セラミックの一軸プレスについて、その手順、利点、精密で費用対効果の高いセラミック部品を製造するための用途をご紹介します。
なぜKbrはIr測定用のペレットを作るのに使われるのか?主な利点の説明
IRに対する透明性、ペレット形成の容易さ、非吸湿性、再現性のある結果など、KBrがIR分光分析ペレットに最適である理由をご確認ください。
IrのKbr法とは何ですか?固体サンプルの高品質スペクトルを解き放つ
赤外分光法におけるKBr法が、再現性と高品質のスペクトルを提供し、正確な分析のために固体試料をどのように調製するのかをご覧ください。
Ftirとは何か、なぜ使われるのか?分子分析の力を引き出す
FTIRスペクトロスコピーが、どのように精密、迅速、多用途に化学化合物を同定し、特性評価するのかをご覧ください。
ろ過の産業用途とは?産業界における重要な役割を知る
食品製造、製薬、石油化学などの産業において、ろ過がどのように品質、安全性、効率性を確保しているかをご覧ください。
プレート&フレームフィルタープレスの構成部品とは?最適なろ過のための主要部品の説明
プレート&フレームフィルタープレスの4つの主要コンポーネント、フレーム、フィルタープレート、マニホールド、フィルタークロスをご覧ください。これらがどのように効率的な固液分離を実現するのかをご覧ください。
フィルタープレスの素材とは?強化ポリプロピレンの利点を知る
高強度、耐食性、無毒性を備えた強化ポリプロピレンがフィルタープレス・プレートに理想的な素材である理由をご覧ください。
ペレットダイとは何ですか?効率的なペレット生産のための重要なコンポーネント
ペレットダイについて、その構成部品、種類、バイオマス、飼料、工業用途のペレット製造を最適化する方法についてご紹介します。
ペレットの品質を決める要因とは?ペレット製造プロセスの最適化
原料の形状、サイズ、含水率がペレットの品質と生産効率にどのように影響するかをご覧ください。プロセスを最適化する方法を学びましょう。
赤外分光法におけるKbrの用途とは?正確な固体試料分析に不可欠
透明で均一、高品質な固体試料分析のために、KBrがどのように赤外分光分析に使用されているかをご覧ください。KBrの主な利点とアプリケーションをご覧ください。
Ir分光法におけるエラーの原因は何ですか?精度と信頼性に影響を与える主な要因
試料の前処理、装置の校正、環境要因、データの解釈など、赤外分光法における一般的なエラーの原因を探る。
Kbrの用途は?科学と産業におけるKbrの多彩な用途を知る
分光法、医学、写真、化学反応、光学製造における臭化カリウム (KBr) の多様な用途を探ります。
金コーティングSemは何のため?正確な結果を得るためのイメージングと導電性の向上
SEMにおける金コーティングがどのように導電性を改善し、帯電を低減し、非導電性サンプルの高解像度イメージングを向上させるかをご覧ください。
Xrf の制限は何ですか?元素分析における主な課題
軽元素の検出、マトリックス効果、精度の課題など、蛍光X線分析における主な限界について説明します。XRFの使用を最適化する方法を学びます。
化学気相浸透法とは?高性能複合材料ガイド
化学気相浸透法(CVI)プロセス、そのステップ、利点、先端複合材料の製造における応用について学ぶ。
フィルタープレス固形分の含有量とは?組成と用途に関する洞察
環境、廃棄物、材料回収プロセスにおけるフィルタープレス固形物の組成、要因、用途をご覧ください。