知識 リソース

リソース

業界を問わず、一般的な技術ガイドラインや基礎知識を幅広く掲載しています。

すべての質問

熱間等方圧接(Hip溶接)プロセスとは?シームレスで高強度の材料接合を実現

HIP拡散接合がどのようにして材料を溶融させることなく冶金学的結合を生成し、高価値部品や異種材料に対して優れた接合完全性を提供するかをご覧ください。

液体の圧力は容器のサイズや形状に依存しますか?静水圧のパラドックスを発見しましょう。

液体の圧力が容器の形状ではなく、深さ、密度、重力によって決定される理由を学びましょう。実験装置や流体システム設計に不可欠です。

同じ力がかかる場合、面積が大きくなると圧力はどのように変化しますか?力分布の物理学をマスターする

P=F/Aの式を使って、面積が増加すると圧力が減少する仕組みを学びましょう。スノーシューや鋭いナイフなどの実例を見て、より良い設計に役立てましょう。

物体の圧力に影響を与えるものは何ですか?より良いエンジニアリングのための力と面積の関係をマスターする

力と面積がどのように圧力を決定するかを学びましょう。固体、液体、気体における切断、荷重の支持、システム設計の実用的な応用を発見してください。

圧力は形状に依存するか?物理学における形状が重要となる場合を理解する

固体の場合と流体の場合で、圧力が形状に依存する場合と依存しない場合を学びます。正確な解析のために、P=F/AおよびP=ρghの公式を習得しましょう。

熱間等方圧接(Hip)はどのような材料に対して行われますか?重要部品の完全密度化を実現する

HIPがいかにして金属、スーパーアロイ、セラミックス、3Dプリント部品の内部欠陥を排除し、優れた性能を実現するかを発見してください。

成形機の目的は何ですか?効率的な大量生産のためのガイド

成形機がプラスチック、ゴム、金属などの材料を、さまざまな産業で大量生産するための精密で再現性のある部品にどのように成形するかを学びましょう。

射出成形機の利点と欠点は何ですか?大量生産の効率を最大化する

射出成形の長所と短所を探る:高速生産、低い単位コストが特徴ですが、初期の金型投資が大きく、設計上の制約があります。

機械成形にはどのような利点がありますか?量産効率と精度を実現

機械成形の主な利点を発見してください:優れた一貫性、高速生産、および大量生産における費用対効果。

圧縮成形とトランスファー成形では、通常どのような種類のプラスチックが使用されますか?優れた性能を実現する熱硬化性樹脂

フェノール樹脂やエポキシ樹脂などの熱硬化性プラスチックが、圧縮成形およびトランスファー成形プロセスの主要な選択肢である理由をご覧ください。

真空昇華法とは?高純度材料精製ガイド

真空昇華法が、真空下で固体を直接気体に変換することで材料を精製する方法を学びましょう。これは、デリケートな化合物や薄膜に最適です。

板金の利点、欠点、および用途は何ですか?材料選定の究極ガイド

板金の長所、短所、および用途を探ります。その強度対重量比、成形性、費用対効果、および製造上の限界について学びます。

金属の2つの欠点とは?腐食と重量制限の理解

金属の2つの主な欠点である腐食と高密度について学びましょう。プロジェクトにおけるエンジニアリングと材料選択への影響を探ります。

金属加工方法の欠点は何ですか?製造における主要なトレードオフを明らかにします

材料の無駄、異方性特性、高いツーリングコストなど、減法、積層、成形による金属加工方法の主な欠点を探ります。

金属鉄の欠点は何ですか?主な制限と合金が代わりに使われる理由

純粋な鉄の主な欠点(錆びやすい性質や劣悪な機械的強度など)と、なぜ鋼などの合金が好まれるのかを発見してください。

金属加工の利点と欠点は何ですか?比類のない強度と設計の柔軟性を解き放つ

金属加工の主なトレードオフを探る:優れた強度と耐久性 対 高コストと長いリードタイム。プロジェクトのために十分な情報に基づいた決定を下しましょう。

金属鋳造の欠点は何ですか?製造プロセスにおけるトレードオフを理解する

寸法精度の低さ、表面仕上げの問題、気孔や収縮などの内部欠陥を含む、金属鋳造の主な限界を探ります。

金属を使用する際の欠点は何ですか?腐食、重量、コストの課題を理解する

腐食、高密度、コスト、導電性の問題など、金属を使用する際の主な欠点を探り、プロジェクトのために十分な情報に基づいた材料選択を行いましょう。

熱間加工と冷間加工の長所と短所は何ですか?精度と成形性のガイド

熱間加工と冷間加工の主な違いを探ります。最適な精度、強度、コスト効率をプロジェクトで実現するために、それぞれの方法をいつ選択すべきかを学びましょう。

冷間加工と熱間加工の利点と欠点とは?適切な金属成形プロセスの選択ガイド

冷間加工と熱間加工のトレードオフを理解する:冷間加工は強度と精度を提供し、熱間加工は大規模な成形を可能にします。

冷間圧延鋼はどこで使われていますか?自動車から家電製品までの用途

自動車、家電製品、建設分野における、その精密さ、滑らかな仕上がり、強度で知られる冷間圧延鋼の主要な用途を発見してください。

冷間加工と熱間加工の例は何ですか?プロジェクトのための金属特性の制御

再結晶温度によって定義される、冶金における冷間加工と熱間加工の違い、および強度、延性、仕上げのために適切なプロセスを選択する方法を学びましょう。

金属の表面は太陽の下でどれくらい熱くなるのか?極端な熱の背後にある驚くべき科学

金属表面は直射日光下で140°Fから190°F(約60°Cから88°C)に達することがあります。色、仕上げ、気流が最高温度と火傷のリスクをどのように決定するかを学びましょう。

金属はどれくらい熱くなることができますか?融点からプラズマ温度まで

金属の温度限界を探る:融点、沸点、および産業用途における実用的な工学的しきい値。

オールメタルホットエンドの最高温度は何度ですか?それは金属ではなく、電子機器によって決まります。

ほとんどのオールメタルホットエンドがサーミスタによって制限され、金属ではなく300°Cで上限に達する理由を発見してください。PEEKのような高温フィラメント用にアップグレードする方法を学びましょう。

アルミニウムは焼結できますか?複雑で軽量な部品のための酸化物バリアを克服する

合金化やスパークプラズマ焼結などの特殊な技術を用いて、アルミニウムの強固な酸化物層を克服し、焼結を成功させる方法を学びましょう。

金属は焼結できますか?丈夫で複雑な金属部品を製造するためのガイド

金属焼結の仕組み、丈夫で高密度の部品を作成するための主な利点、およびこのプロセスに最適な金属についてご紹介します。

セラミックは焼結できますか?超高耐久性材料を生み出すプロセスを発見する

焼結がセラミック粉末を緻密で非多孔質の固体にどのように変えるかを学びましょう。焼結セラミックのプロセス、利点、用途を探ります。

金属の焼結はどのように機能するのか?強固な部品のための固相拡散ガイド

金属焼結がどのように熱と圧力を利用して金属粉末を溶融させずに融合させ、大量生産向けに強固で精密な部品を製造するかを学びましょう。

焼結はセラミックスをどのように機能させるのか?高密度で高強度の材料を実現するためのプロセスを解き明かす

焼結がセラミック粉末をどのように原子拡散と制御された熱プロセスを通じて高密度で強固な部品へと変えるかを学びましょう。

プレス・焼結の欠点は何ですか?粉末冶金のトレードオフを理解する

プレス・焼結プロセスの主な欠点、すなわち本質的な多孔性、寸法管理の課題、高い金型コスト、エネルギー消費量について探ります。

焼結の目的は何ですか? 溶融させずに、強靭で複雑な部品を作成すること

焼結が、金属、セラミック、プラスチックの粉末を、多孔性などの制御された特性を持つ固体部品にどのように融合させるかを発見してください。これは、高融点材料に最適です。

プレス・焼結とは?効率的でニアネットシェイプ製造へのガイド

プレス・焼結が、粉末材料から溶解させることなく複雑で耐久性のある部品をどのように作り出すかをご覧ください。これは、高融点金属や大量生産に理想的です。

焼結法の用途とは?高性能部品を製造するためのガイド

粉末冶金、3Dプリンティングから、多孔質フィルターや各種産業向けの高温部品の製造まで、焼結の応用を探ります。

鋼を焼結するために必要な温度は何度ですか?強度と精度を最適化するためのプロセス

鋼合金の重要な焼結温度範囲(1120°C~1300°C)と、最適な結果を得るための雰囲気、密度、コストの管理方法を学びましょう。

焼結の危険性とは何ですか?プロセス、財務、安全のリスクを管理する

焼結の危険性:予測不可能な収縮、高コスト、安全リスクについて学びましょう。部品製造を成功させるために、これらの課題を軽減してください。

焼結サイクルの3つのステップとは?より強力な部品のためのプロセスを習得する

粉末混合、成形、炉加熱という3つの主要な焼結ステップを学びましょう。部品の密度、強度、複雑な形状を正確に制御します。

なぜセラミックスに焼結が使われるのですか?部品の強度と安定性を解き放つ

焼結は、弱いセラミック粉末を原子拡散によって緻密で強い固体に変えます。このプロセスがどのようにして高性能部品の主要な特性を実現するかをご覧ください。

焼結にはどのような材料が使用できますか?金属、セラミックス、複合材料を探る

焼結は金属、セラミックス、複合材料と互換性があります。構造部品、高温部品、耐摩耗部品の材料選択について学びましょう。

粉末金属およびセラミックスの焼結とは?高密度で高性能な部品を作成するための鍵

焼結が、金属やセラミックスの粉末を、融点より低い温度で加熱することにより、いかにして固体で強靭な部品へと変えるのかを学びましょう。これにより機械的特性が向上します。

Acフレームとは?Wi-Fiとビデオにおける2つの意味を解読する

ACフレームには2つの意味があります。802.11ac Wi-Fiデータパケット、またはビデオ圧縮係数です。両者の違いと、それがパフォーマンスに与える影響を学びましょう。

歯冠長延長術の代替手段には何がありますか?歯列矯正的挺出と歯肉切除術を探る

歯を修復したり、笑った時に歯茎が見えすぎる状態(ガミースマイル)を矯正したりするための、外科的歯冠長延長術の主な代替手段である、歯列矯正的挺出や歯肉切除術についてご紹介します。

フィルターの許容差圧はどのくらいですか?システムの健全性と効率をマスターする

メーカーの仕様とシステム要件を使用して、許容フィルター差圧を定義する方法を学びましょう。効率、エネルギーコスト、寿命のバランスを取ります。

スパッタリング蒸着プロセスとは何ですか?Pvdにおける主な違いを理解する

スパッタリングと蒸着:薄膜コーティングのためのこれら2つの物理気相成長(PVD)法間の核心的な違いを発見しましょう。

スパッタリングが蒸着に勝る利点は何ですか?要求の厳しい用途向けの優れた膜品質

スパッタリングが蒸着よりも優れた密着性、密度、均一性を持つ薄膜を生成する理由を発見してください。高性能コーティングに最適です。

スパッタリングは蒸着よりも段差被覆性が優れていますか?はい、複雑な表面への優れた成膜のために。

スパッタリングは、複雑な3D構造に対して、蒸着よりも優れた段差被覆性を提供します。より良い密着性と均一な膜を実現する物理学を学びましょう。

スパッタリングと蒸着の違いは何ですか?優れた薄膜のための適切なPvd法を選択する

スパッタリングと蒸着のPVD法を比較します。成膜の密着性、成膜速度、材料の多様性におけるトレードオフを研究室向けに学びましょう。

Semトリムペイントの硬化にはどのくらい時間がかかりますか?乾燥と完全硬化の違いについてのガイド

SEMトリムペイントの指触乾燥と完全硬化の違いを学びましょう。最大の耐久性を得るための20分から72時間以上の主要な段階を理解します。

薄膜のSem膜厚測定方法:正確な解析のための直接的な視覚ガイド

薄膜の膜厚を測定するためのSEM断面法を、サンプル調製、イメージング、解析技術を含めて段階的に学びましょう。

膜厚は何で測定されますか?ナノメートル、ミクロン、および測定技術の理解

膜厚がなぜナノメートル(nm)またはミクロン(µm)で測定されるのかを学び、ラボアプリケーションで精密な制御を行うための最適な技術を発見してください。

薄膜の厚さの単位は何ですか?ナノメートル、マイクロメートル、オングストロームのスケールを習得する

薄膜の厚さの主要な単位(nm、µm、Å)と、光学、半導体、保護コーティングにおいて精密な測定がなぜ重要なのかを学びましょう。

薄膜の厚さはどのように測定されますか?フィルムの原子レベルの精度を実現する

エリプソメトリーや反射率測定など、薄膜の厚さを測定するための主要な方法を発見し、半導体やコーティングの品質を確保します。

厚膜回路とは?耐久性に優れ、高出力に対応するハイブリッド電子ソリューション

厚膜回路についてご紹介します。スクリーン印刷され、セラミック上に焼き付けられた電子回路は、過酷な環境下での極めて高い耐久性、高出力処理能力、信頼性を実現します。

薄膜回路が重要なのはなぜですか?高周波エレクトロニクスで比類のない精度を実現

医療、航空宇宙、通信用途における精度、安定性、高周波性能にとって薄膜回路が不可欠である理由をご覧ください。

厚膜Pcbと薄膜Pcbの違いとは?適切な回路技術の選択

厚膜PCBと薄膜PCBの主な違いを、製造プロセスから性能、コスト、理想的な用途まで探ります。

薄膜回路とは何ですか?比類のない小型化と高周波性能を実現

PVD/CVD成膜とフォトリソグラフィを用いて薄膜回路がどのように構築され、優れた小型化、精度、高周波用途を実現しているかをご覧ください。

エチレン分解炉とは?石油化学生産の高温心臓部

スチームクラッキングを用いて、原料をプラスチックや化学製品の主要な構成要素であるエチレンに転換するエチレン分解炉の仕組みを学びましょう。

凝縮チューブとは何ですか?高額なHvacのシャットダウンと水害を防ぐ

凝縮チューブがHVACシステムから水を安全に排出し、詰まり、シャットダウン、水害を防ぐ方法を学びましょう。重要なメンテナンスのヒントが含まれています。

プッシャー炉とは?連続的・大量の熱処理ガイド

プッシャー炉がいかにして、一貫した焼結、焼鈍、ろう付けを産業用途で実現するかを学びましょう。

バッチ炉と連続炉の違いは何ですか?生産量に合った適切なシステムを選択する

バッチ炉と連続炉の主な違いを学び、柔軟性または高いスループットのために生産を最適化しましょう。

焼結鉱とペレットの違いは何ですか?適切な凝集技術の選択で高炉を最適化しましょう

焼結鉱対ペレット:生産、物流、性能における主な違いを学び、高炉の効率とコスト効率を最適化しましょう。

操業中の高炉で100%焼結鉱を使用しないのはなぜですか?ガス流の停滞と不安定性を回避するため

100%焼結鉱がどのように高炉のガス流を妨げ、非効率性と不安定性を引き起こすかを学びます。最適な性能を得るための焼結鉱・ペレット・塊鉱石の理想的な混合比率を発見してください。

高炉における焼結鉱の用途は何ですか?エンジニアリングされた原料で鉄生産を最適化する

焼結鉱がどのように鉄鉱石の微粉を多孔質で丈夫な高炉用原料に変え、ガス流、効率、リサイクルを向上させるかをご覧ください。

真空ボイラーとは?より安全で効率的な暖房システムを解説

真空ボイラーがどのように負圧を利用して、従来のボイラーと比較してより安全でメンテナンスの手間がかからず、高効率な温水暖房を実現するかをご覧ください。

バイオ炭はなぜ物議を醸すのか?気候変動対策の可能性と現実世界のリスクのバランス

バイオ炭の議論を探る:炭素隔離と土壌の健康に対するその可能性と、産業規模、土地利用、グリーンウォッシングのリスク。

バッチ式熱分解とは?柔軟な廃棄物転換のためのスタート・ストップ方式

バッチ式熱分解の仕組み、柔軟性とコストにおける主な利点、そしてプロジェクトにおいて連続システムよりもバッチ式を選択すべき場合について学びましょう。

バイオ炭の熱分解のコストはいくらですか?1トンあたり230ドルの製造価格を解き明かす

バイオ炭の熱分解コストは約230ドル/トンですが、総費用は原料、規模、技術によって決まります。真の収益性を評価する方法を学びましょう。

バイオ炭は熱分解によって製造できますか?はい、それは高品質バイオ炭のコアとなる方法です

バイオマスから土壌改良や炭素隔離のために高収量のバイオ炭を生産する主要な方法が、特に緩速熱分解である熱分解であることを学びましょう。

高速熱分解法とは?バイオマスをバイオオイルに変換する迅速なプロセス

高速熱分解がどのようにしてバイオマスを迅速にバイオオイルに変換するかを学びましょう。そのプロセス、バイオチャーや合成ガスなどの生成物、そして再生可能エネルギーへの応用について発見してください。

低速熱分解とは?バイオマスからのバイオ炭生産を最大化するためのガイド

低速熱分解は、バイオマスを安定したバイオ炭に変換する熱化学プロセスです。その仕組み、主な利点、理想的な用途について学びましょう。

熱分解で電力を生成できますか?廃棄物とバイオマスから電力を解き放つ

熱分解がバイオマスや廃棄物を合成ガスやバイオオイルに変換し、間接的な発電に利用する方法を学び、持続可能なエネルギーソリューションを提供します。

熱分解システムはどのように機能するのか?廃棄物を燃料と化学物質に変換する

熱分解システムが、酸素なしでプラスチックやバイオマスなどの物質を熱分解し、貴重なオイル、ガス、炭(チャー)を生成する方法を学びましょう。

時計における物理蒸着(Pvd)とは?耐久性のあるハイテクコーティングプロセスを解説

PVDコーティングがいかに時計の耐久性と耐傷性を高めるかをご覧ください。そのプロセス、利点、そして従来のメッキとの比較を探ります。

物理気相成長法(Pvd)はトップダウンですか、それともボトムアップですか?主要な作製方法を解き明かす

物理気相成長法(PVD)がボトムアッププロセスである理由を発見しましょう。これは、優れた材料制御のために原子レベルで薄膜を構築するプロセスです。

物理蒸着の生成物は何ですか?A 高性能薄膜コーティング

PVDがどのようにして、部品の硬度、耐摩耗性、熱性能を向上させる超薄型の機能性コーティングを作成するかをご覧ください。

物理気相成長法(Pvd)における蒸着法とは何ですか?薄膜コーティング技術のガイド

PVD蒸着の仕組みを学びましょう。真空中で固体材料を加熱して蒸気にし、様々な用途のために基板上に超薄く均一なコーティングを堆積させます。

マグネトロンスパッタリングの方法とは?薄膜堆積のためのステップバイステップガイド

真空チャンバーのセットアップからDC/RF法まで、マグネトロンスパッタリングのプロセスを学び、様々な基板上に高品質で均一な薄膜を作成する方法を習得しましょう。

マグネトロンスパッタリングは何に使われますか?貴社の産業向けに高性能薄膜を生成

マグネトロンスパッタリングの用途をご覧ください:耐久性のある保護コーティングや先進的なマイクロエレクトロニクスから、光学フィルムや医療機器コーティングまで。

マグネトロンスパッタリングの主な種類とは?研究室向けのDc、Rf、Hipimsのガイド

DC、RF、HiPIMSマグネトロンスパッタリングの種類を探ります。導電性、絶縁性、または高性能薄膜堆積に適した技術の選択方法を学びましょう。

マグネトロンスパッタリングの例は何ですか?眼鏡や電子機器用の高性能コーティングの作成

マグネトロンスパッタリングの仕組み、高い成膜速度や低温プロセスなどの主な利点、および光学・電子機器への応用について学びましょう。

マグネトロンスパッタリングでアルゴンが使用されるのはなぜですか?効率的な薄膜堆積のための理想的な不活性ガス

アルゴンが、その最適な原子量、化学的不活性、および効率的なイオン化特性により、マグネトロンスパッタリングの業界標準となっている理由をご覧ください。

マグネトロンスパッタリングプラズマの温度は何度ですか?低温薄膜堆積の鍵を解き明かす

マグネトロンスパッタリングプラズマに単一の温度が存在しない理由と、その非熱平衡状態がどのようにして精密な低温薄膜コーティングを可能にするのかを発見してください。

プラズママグネトロンスパッタリングとは?高性能薄膜堆積のためのガイド

真空環境下で、プラズママグネトロンスパッタリングがいかにして光学、エレクトロニクス、耐摩耗性コーティング用の均一で耐久性のある薄膜を生成するかを学びましょう。

Dcマグネトロンスパッタリングの原理とは?高速・高品質な薄膜成膜を実現

DCマグネトロンスパッタリングが磁場を利用して高密度プラズマを生成し、導電性材料に効率的で高純度な薄膜コーティングを行う方法を学びましょう。

マグネトロンスパッタリングの物理学とは?研究室で優れた薄膜コーティングを実現する

研究および製造において、高密度で純粋かつ均一な薄膜を作成するための高効率PVDプロセスであるマグネトロンスパッタリングの物理学を学びましょう。

Dcスパッタリングのメカニズムとは?薄膜作製のための物理気相成長(Pvd)ガイド

DCスパッタリングの仕組みを学びましょう。プラズマとイオン衝撃を利用して導電性薄膜を堆積させるPVDプロセスのステップバイステップガイドです。

スパッタリングシステムはどのように機能するのか?研究室で優れた薄膜堆積を実現する

スパッタリングシステムが、真空環境下でプラズマとマグネトロンを使用して、金属や合金の高品質で均一な薄膜を堆積させる方法を学びましょう。

Sem用カーボンコーティングの厚さはどれくらいですか?試料の導電性と分析精度を最適化する

SEMにおいて、チャージングを防ぎ、鮮明なEDS分析を可能にし、試料の詳細を維持するための理想的なカーボンコーティングの厚さ(5-20 nm)を学びましょう。

スパッタコーティングの結晶粒径はどのくらいですか?アプリケーションに合わせてナノスケール構造を制御する

ナノメートルから数十ナノメートルに及ぶスパッタコーティングの結晶粒径が、SEM、導電性膜、光学系のために堆積パラメータによってどのように制御されるかを学びましょう。

スパッタリングによる金の膜厚はどれくらいですか?アプリケーションに合わせてオングストロームレベルの精度を実現

SEM、光学、電子機器向けに、スパッタリングによる金の膜厚を5~100 nmの範囲で制御する方法を学びます。お客様のニーズに合わせて、正確で均一なコーティングを実現します。

スパッタリングLow-Eコーティングとは何ですか?ガラスのための高性能熱ミラー

スパッタリングLow-Eコーティングの仕組み、その省エネ効果、そして最適な窓性能を得るためのパイロリティックハードコートとの比較について学びましょう。

スパッタリングコーティングガラスとは何ですか?高性能太陽光制御技術を発見する

スパッタリングコーティングガラスが、濃い色付けをすることなく、優れた遮熱性、UV保護、透明性を実現するために、どのようにガラスに金属層を埋め込んでいるかを学びましょう。

スパッタコーターの原理とは?マグネトロンスパッタリングによる薄膜成膜ガイド

スパッタコーティングの仕組みを学ぶ:プラズマとイオン衝撃を利用して均一な薄膜を生成するPVDプロセスの段階的な解説。

スパッタ蒸着の仕組み:精密薄膜コーティングのガイド

超薄型で均一な膜を形成するための4段階のプロセスを通じて、スパッタ蒸着の仕組みを学びましょう。CVD、熱蒸着、電気めっきと比較します。

RfスパッタリングとDcスパッタリングの違いは何ですか?材料に合った適切な方法を選択する

RFスパッタリングとDCスパッタリングの主な違いを学びましょう:導電性金属にはDC、絶縁材料にはRF。薄膜成膜のニーズに合った適切な選択をしてください。

Rfスパッタリングのメカニズムとは何ですか?高品質な絶縁膜および化合物膜の作製

RF反応性スパッタリングが、交流電源と反応性ガスを組み合わせて、絶縁性ターゲットから複雑な酸化物膜や窒化物膜を成膜する方法を学びましょう。

反応性スパッタリングの利点は何ですか?化合物薄膜の精密制御を実現

反応性スパッタリングがいかにして、シンプルで純粋な金属ターゲットを使用して、コスト効率の高い生産で精密な化学量論を持つ高品質の酸化物および窒化物膜を生成するかをご覧ください。

Dcスパッタリングの欠点は何ですか?薄膜堆積における主な制限

絶縁材料を処理できないこと、堆積速度が遅いこと、基板の加熱の可能性など、DCスパッタリングの主な欠点を探ります。

スパッタコーター内の圧力とは?優れた成膜のためのベース圧力と動作圧力

スパッタコーティングにおける2つの重要な圧力段階を学びましょう。膜の純度を保つためのベース圧力と、密度、応力、均一性を制御するための動作圧力です。

スパッタコーターとは?高精度薄膜成膜ガイド

スパッタコーターがどのようにプラズマを使用して、SEMサンプル前処理、半導体、および高度な光学部品向けに超薄型で均一なコーティングを成膜するかを学びましょう。