よくある質問

Related to: 超高温黒鉛真空黒鉛化炉

温度制御システムの例は何ですか?家庭用サーモスタットから産業用精密機器まで

簡単なオン/オフサーモスタットから、研究室や産業で使用される高度なPIDコントローラーまで、温度制御システムがどのように機能するかを学びましょう。

金型のコア部分とは?コンポーネントの内部形状を形成する

内部形状の作成、エジェクタシステムの収納、および製造可能性のための主要な設計考慮事項における金型コアの役割を学びます。

活性炭はどうやって活性化されるのか?分子スポンジを生み出すプロセス

熱または化学薬品を用いた活性化プロセスが、炭素内に広大な細孔ネットワークをどのように作り出し、強力な吸着能力を与えるのかを学びましょう。

セラミックスの主な欠点は何ですか?脆性という重大な課題

セラミックスの主な欠点がなぜ脆性であるのかを発見してください。その硬度と耐熱性にもかかわらず、高い衝撃を伴う用途での使用が制限されています。

ロータリーベーンポンプと液封式真空ポンプの比較:プロセスに合った真空ポンプの選び方

ロータリーベーンポンプと液封式真空ポンプを比較:高真空 vs 汚染物質処理能力。アプリケーションのニーズに合ったポンプを選びましょう。

電気分解セルシステムの主要な構成要素とその機能は何ですか?制御された化学反応の核心をマスターする

精密な化学変換のための電気分解セルシステムにおける電極、電解質、および電源の役割を学びましょう。

カーボンペーパーはどのように作られていますか?高性能アプリケーションのための多孔質エンジニアード足場

カーボンペーパーの不織布で多孔質の結合繊維構造が、燃料電池や電極に高い導電性とガス透過性をもたらす仕組みをご覧ください。

カーボン紙の寿命を延ばすにはどうすればよいですか?エポキシで端を補強して耐久性を最大化する

簡単なエポキシ端処理がひび割れやほつれを防ぎ、燃料電池や実験用途におけるカーボン紙の寿命を大幅に延ばす方法を学びましょう。

試料ホルダーを使用する際に、どのような静電保護対策を講じるべきですか?デリケートな試料を保護する

デリケートな電子部品への損傷を防ぎ、実験の完全性を確保するために、試料ホルダーの必須のESD保護方法を学びましょう。

白金メッシュ電極に必要なメンテナンスとは?長寿命と精度のための必須ステップ

信頼性の高い電気化学的性能を確保するために、白金メッシュ電極の洗浄、取り扱い、保管を含む完全なメンテナンスプロトコルを学びましょう。

真空圧はどのように測定されますか?正確なゲージと技術のガイド

粗真空、高真空、超高真空の異なるゲージを使用して真空圧がどのように測定されるかを学びます。原理と応用を理解してください。

熱分解の原料は何ですか?有機材料の可能性を解き放つ

バイオマスから廃プラスチックまで、熱分解の原料を探る。原料の選択が、エネルギーと持続可能性のためのバイオオイル、バイオ炭、合成ガスの収率にどのように影響するかを学びましょう。

セラミックスには耐食性がありますか?過酷な用途のためにその不活性な性質を活用する

セラミックスが強力なイオン結合/共有結合により例外的に耐食性がある理由、そして化学物質や高温に対する安定性を提供する理由をご覧ください。

セラミックスは耐久性がありますか?用途に合わせてその強度と脆性を解き明かす

セラミックスは熱、摩耗、腐食に対して非常に高い耐久性を持ちますが、脆性があります。最適な性能を得るために、その強みをニーズに合わせる方法を学びましょう。

セラミックスは温度に敏感ですか?最高のパフォーマンスのために熱衝撃をマスターする

セラミックスは高温ではなく、急激な温度変化に敏感です。熱衝撃の仕組みと、用途に合ったセラミックスの選び方を学びましょう。

誘導コイルの効率はどれくらいですか?ワイヤレス給電システムを最適化する

コイルの結合、品質係数、システム設計が、95%超から50%未満までの誘導効率をどのように決定するかを学びましょう。

薄膜成膜における真空とは?高品質な膜成膜の基礎をマスターする

薄膜成膜に真空がいかに不可欠であるかを学びましょう。真空が膜の純度を保証し、優れた結果を得るための精密なプロセス制御を可能にする方法を発見してください。

スパッタリングで成膜する際に真空が必要なのはなぜですか?純度とプロセス効率の確保

スパッタコーティングに真空が不可欠な理由をご覧ください。真空は汚染を防ぎ、高品質な薄膜のための物理的プロセスを可能にします。

タングステンを使用するデメリットは何ですか?高コストと製造の難しさ

純粋なタングステンの主な欠点を探ります。これには、室温での極度の脆さ、高い製造コスト、加工の難しさなどが含まれます。

Kbrの重要性とは?分光法と医療における不可欠な役割

FTIR分光法の主要材料として、また獣医学における基礎的な抗けいれん剤としてのKBr(臭化カリウム)の二重の重要性を発見してください。

炭化ケイ素は水を吸収しますか?過酷な用途向けの固有の耐湿性を発見する

炭化ケイ素は、その高密度で非多孔質の構造と化学的不活性性により水を吸収せず、湿度の高い環境や濡れた環境でも安定した性能を保証します。

炭化ケイ素(Sic)の用途は何ですか?極度の熱、摩耗、純度の課題を解決する

炉、耐摩耗部品、半導体装置における炭化ケイ素(SiC)の用途をご覧ください。その硬度、熱安定性、純度が極限の要求にどのように応えるかを学びましょう。

薄膜堆積の応用分野とは?材料の新たな可能性を解き放つ

薄膜堆積がいかに光学、エレクトロニクス、耐久性の材料を強化するかを探ります。PVD、CVD、ALDの方法について学び、適切なソリューションを選択してください。

カーボンナノチューブの機械的応用とは?比類なき強度を持つ材料を強化する

カーボンナノチューブが複合材料、コンクリート、ポリマーの機械的特性をどのように向上させ、優れた強度、耐久性、性能を実現するかを探ります。

化学気相成長(Cvd)における基板材料とは何ですか?高品質薄膜のための基盤

シリコンウェハ、サファイア、ガラスなどのCVD基板材料について学びましょう。薄膜の品質、性能、プロセス安定性におけるそれらの重要な役割を理解します。

融解速度を測定するには?正確な材料分析のための技術

DSCによる精密測定からバルクプロセス向けの重量分析まで、融解速度を測定するための最良の方法を学びましょう。材料科学およびプロセス制御に不可欠です。

化学におけるKbrとは何ですか?Ir分光法などにおけるその役割を発見する

臭化カリウム(KBr)の特性、赤外分光法における重要な役割、および医学や写真における歴史的な用途について学びましょう。

IrにおけるKbrの範囲は?4000-400 Cm⁻¹の中赤外分光法ガイド

KBrのIR範囲は4000-400 cm⁻¹で、中赤外分光法に最適です。その利点、限界、正確なサンプル分析のためのベストプラクティスを学びましょう。

スパッタリングに影響を与える要因とは?薄膜成膜プロセスを制御する

ターゲット材料、ガス圧、電力設定が、研究室におけるスパッタリング成膜速度と薄膜品質にどのように影響するかを学びましょう。

スパッタリングでプラズマはどのように生成されるのか?イオン化と薄膜堆積のステップバイステップガイド

電界とガス電離によってスパッタリング用のプラズマがどのように生成されるかを学びましょう。効率的な薄膜堆積のためのDC、RF、マグネトロンスパッタリングの方法を探ります。

スパッタリングにおいてアルゴンはどのようにイオン化されるのか?安定したプラズマを点火するための鍵

電子衝突イオン化とマグネトロントラップが、効率的なスパッタリング成膜プロセスに不可欠なアルゴンプラズマをどのように生成するかを学びましょう。

マグネトロンスパッタリングの利点は何ですか?高レート、低損傷の薄膜成膜を実現

マグネトロンスパッタリングの利点を発見してください:高成膜レート、基板加熱の低減、比類のない材料の多様性により、精密な薄膜コーティングを実現します。

マグネトロンスパッタリングの用途とは?高性能薄膜コーティングを実現する

マグネトロンスパッタリングが半導体、光学、医療機器などに精密で耐久性のある薄膜をどのように生成するかをご覧ください。その主な利点と用途を学びましょう。

マグネトロンスパッタリングのDcとRfの違いは何ですか?あなたの材料に最適な方法を選択してください

DCスパッタリングは導電性金属用です。RFスパッタリングは絶縁体を扱います。薄膜堆積を最適化するために、電源、材料適合性、コストの主な違いを学びましょう。

マグネトロンスパッタリングにおけるチャンバー圧力の影響とは?膜質制御のためのガイド

チャンバー圧力がマグネトロンスパッタリングにおける薄膜の密度、密着性、コンフォーマリティ(追従性)にどのように影響するかを学びましょう。より良い結果を得るために、この重要なパラメータを習得してください。

スパッタリング表面処理プロセスとは何ですか?原子レベルのコーティング精度を実現

スパッタリングは、高純度で均一な薄膜を作成するための真空成膜プロセスです。その仕組み、利点、および用途について学びましょう。

熱蒸着法とは?薄膜コーティング技術のガイド

熱蒸着がいかにしてエレクトロニクス、光学、パッケージング向けに超薄膜を生成するかを学びましょう。プロセス、用途、利点を理解します。

セラミックスはなぜ腐食に対してより耐性があるのか?比類のない化学的安定性の秘密を解き明かす

アルミナやジルコニアなどのセラミックスが、強力なイオン結合と安定した完全酸化された化学構造のために腐食に抵抗する理由をご覧ください。

物理蒸着プロセスはなぜ真空環境で行う必要があるのですか?純度と性能を確保するため

PVDコーティングに真空が不可欠な理由をご覧ください。これにより、粒子の直接移動、汚染防止、高性能薄膜の確保が可能になります。

熱蒸着の用途とは?エレクトロニクス、光学、装飾仕上げに不可欠

OLEDディスプレイや太陽電池から反射コーティング、装飾仕上げまで、熱蒸着の応用を探ります。その主要な用途と利点を学びましょう。

スパッタリングと蒸着技術の違いは何ですか?適切なPvdメソッドを選択するためのガイド

薄膜堆積、密着性、速度、材料適合性におけるスパッタリング(運動)と蒸着(熱)PVD技術の主な違いを学びましょう。

薄膜の役割とは?現代技術の目に見えないエンジン

光、電気、熱を制御することで、薄膜がどのように現代のデバイスを可能にしているかを発見してください。光学、電子機器、エネルギー分野での応用について学びましょう。

電子ビームの用途とは? 産業と科学のための高精度エネルギーの活用

電子ビームの用途を探る:高精度溶接、マイクロチップリソグラフィ、高度な顕微鏡検査、滅菌。航空宇宙、医療、エレクトロニクスに最適です。

電子ビーム蒸着の欠点は何ですか?膜質と密着性における主なトレードオフ

Eビーム蒸着の限界(膜密度の低下、密着性の弱さ、内部応力など)を探り、どのような場合にプロジェクトでEビーム蒸着を選択すべきかを学びましょう。

バイオ炭はどのように水質を改善するのか?汚染物質除去のための工学的ソリューション

バイオ炭の多孔質構造と表面化学が、重金属や農薬などの汚染物質をどのようにろ過し、水質を改善するかをご覧ください。

研究室におけるインキュベーターの一般的な用途は何ですか?正確な分析のための微生物培養

研究室用インキュベーターが、臨床診断や食品安全に不可欠な細菌培養の増殖のために、どのように制御された汚染のない環境を提供するのかを学びましょう。

マグネトロンスパッタリングプラズマの温度は何度ですか?低温薄膜堆積の鍵を解き明かす

マグネトロンスパッタリングプラズマに単一の温度が存在しない理由と、その非熱平衡状態がどのようにして精密な低温薄膜コーティングを可能にするのかを発見してください。

セラミックスの強度は何によって決まるのか?脆性破壊における微細な欠陥の驚くべき役割

気孔率、結晶粒径、製造上の欠陥が、原子結合だけでなく、セラミック材料の実際の強度と脆性破壊をどのように決定するかを学びましょう。

ペレットマシンのダイのサイズとは?完璧なペレットを作るためのL/D比をマスターする

ペレットマシンのダイの寸法(穴の直径、厚さ、L/D比)が、ペレットの密度、耐久性、生産効率をどのように決定するかを学びましょう。

フィルターの許容差圧はどのくらいですか?システムの健全性と効率をマスターする

メーカーの仕様とシステム要件を使用して、許容フィルター差圧を定義する方法を学びましょう。効率、エネルギーコスト、寿命のバランスを取ります。

焼結鉱とペレットの違いは何ですか?適切な凝集技術の選択で高炉を最適化しましょう

焼結鉱対ペレット:生産、物流、性能における主な違いを学び、高炉の効率とコスト効率を最適化しましょう。

物理気相成長法(Pvd)における蒸着法とは何ですか?薄膜コーティング技術のガイド

PVD蒸着の仕組みを学びましょう。真空中で固体材料を加熱して蒸気にし、様々な用途のために基板上に超薄く均一なコーティングを堆積させます。

物理的成膜の例は何ですか?高純度薄膜のためのスパッタリング

真空環境下で純粋で耐久性のあるコーティングを作成するために使用される、スパッタリングや熱蒸着などの物理的成膜の例について学びましょう。

マグネトロンスパッタリングはどのような種類のメソッドですか?高効率Pvdコーティング技術

マグネトロンスパッタリングは、磁場を利用して高品質で均一な薄膜を効率的に生成する物理蒸着(PVD)法です。

マグネトロンスパッタリングは何に使われますか?貴社の産業向けに高性能薄膜を生成

マグネトロンスパッタリングの用途をご覧ください:耐久性のある保護コーティングや先進的なマイクロエレクトロニクスから、光学フィルムや医療機器コーティングまで。

電子ビーム法とは?精密コーティング、切断、滅菌のためのガイド

電子ビーム技術が、真空中で集束された電子の流れを、精密なコーティング、加工、滅菌の用途にどのように使用するかを学びましょう。

成膜技術は何のために使われますか?製品の高度な表面工学を解き放つ

成膜技術がどのようにして電子機器、保護コーティング、光学部品用の薄膜を作り出すかを発見してください。その用途と主要な考慮事項を学びましょう。

焼結鉄の組成とは何ですか?鉄、合金、および多孔性のエンジニアリングシステム

焼結鉄の組成—鉄、炭素、銅、および制御された多孔性—が、自己潤滑性、強度、およびコスト効率の高い部品のためにどのように設計されているかを学びましょう。

マグネトロンスパッタリングは他の方法とどう違うのか?高速で高品質な薄膜を実現

マグネトロンスパッタリングの磁場がどのように成膜速度と膜質を向上させ、産業用途でトップの選択肢となっているかを発見してください。

電子ビーム蒸着の長所と短所は何ですか?要求の厳しい用途向けの高純度膜

高純度薄膜堆積のための電子ビーム蒸着の長所と短所(材料の多様性、コスト、均一性の課題を含む)を探ります。

熱蒸着システムの主な欠点は何ですか?高汚染リスクの解説

熱蒸着の主な欠点、すなわち膜の汚染と不純物レベルの高さについて解説します。これはコーティング品質を損ない、材料適合性を制限します。

蒸着法はどのように機能するのか?高純度薄膜コーティングのガイド

真空中で蒸着法がいかにして超薄膜を形成するかを学びましょう。精密な材料コーティングのためのプロセス、利点、および応用を理解します。

薄膜の蒸着技術とは?高純度コーティングのガイド

真空中で熱蒸着がどのように機能し、エレクトロニクス、光学、コーティング用の超薄型高純度膜を作成するかを学びましょう。

薄膜成膜に使用される材料は?金属、セラミックス、半導体などのガイド

金属、セラミックス、半導体、有機物など、薄膜成膜に使用される材料を探ります。材料の選択が導電性、硬度、光学特性にどのように影響するかを学びましょう。

重量粉砕に適したミルはどれですか?重く粘性の高い材料を処理するための究極ガイド

ペーストやスラリーのような重く粘性の高い材料を粉砕するのにコロイドミルが選ばれる理由を発見してください。その利点と限界について学びましょう。

石英の高温高圧変種は何ですか?コーサイトとスティショバイトを発見

超高圧変成作用や隕石衝突の重要な指標である高圧SiO₂多形、コーサイトとスティショバイトについて学びましょう。

焼結鉄の特性は何ですか?高強度と正確な磁気特性を実現

焼結鉄の主な特性、高強度、優れた耐摩耗性、調整可能な磁気特性について探ります。

陶器のスタイルの種類は?土器、炻器、磁器、ボーンチャイナのガイド

陶磁器の4つの主要なタイプ、すなわち土器、炻器、磁器、ボーンチャイナを発見してください。それぞれの特性、用途、そしてプロジェクトに最適なものを選ぶ方法を学びましょう。

ボールミルの粉砕メカニズムにおける回転速度の影響とは?粉砕効率を最適化しましょう

ボールミルの速度が粉砕メカニズム(衝撃 vs. 摩耗)をどのように制御し、最大の粉砕効率を得るための最適な速度を見つける方法を学びましょう。

ボールミルの産業用途は何ですか?鉱業からナノマテリアルまで

鉱業、セメント、化学、先端材料におけるボールミルの用途を探ります。産業向けに材料を粉砕、混合、合成する方法を学びましょう。

ロータリーベーンポンプの到達真空度はどれくらいですか?実験室や産業向けに中真空を実現する

オイルシール式ロータリーベーンポンプがどのように約1ミリトル(mTorr)の真空度を達成するのか、ラフティングポンプとしての役割、そしてオイルシールや単段/二段設計などの重要な要素を発見してください。

ロータリー真空ポンプの用途とは?研究室と産業のための信頼性の高い粗真空ガイド

ロータリー真空ポンプが研究室や産業向けに粗真空を生成する方法を学びましょう。種類、動作原理、および用途に合ったポンプの選び方を探ります。

ロータリーベーン真空ポンプのオイル交換はどのくらいの頻度で行うべきですか?ポンプの性能と寿命を最適化しましょう

ロータリーベーン真空ポンプのオイル交換における重要な要素を学びましょう。3,000時間ルールを超えて、ポンプを汚染や摩耗から保護します。

スパッタリングの圧力範囲はどのくらいですか?薄膜堆積プロセスを最適化する

スパッタリングの重要な圧力範囲(1-100 mTorr)と、それが研究室のアプリケーションにおけるプラズマの安定性、膜の品質、堆積速度にどのように影響するかを学びましょう。

クライミングフィルム式蒸発器とフォーリングフィルム式蒸発器の違いは何ですか?プロセスに合った適切なシステムを選択しましょう

クライミングフィルム式蒸発器とフォーリングフィルム式蒸発器の主な違い(流れの方向、熱感受性への対応、用途の適合性など)を学びましょう。

マグネトロンスパッタリングの仕組みとは?高品質薄膜堆積のためのガイド

マグネトロンスパッタリングが磁場を利用して効率的なプラズマを生成し、エレクトロニクスや光学分野で精密かつ均一な薄膜堆積を実現する方法を学びましょう。

Dcスパッタリングの用途は何ですか?ハイテク用途向け導電性薄膜の成膜

DCスパッタリングを探る:マイクロエレクトロニクス、光学、保護コーティングにおける導電性薄膜成膜のためのPVD技術。

マグネトロンスパッタリング技術とは?高速・高品質な薄膜成膜ガイド

マグネトロンスパッタリングが磁場を利用して、高い成膜速度、低温、優れた密着性を持つ優れた薄膜をどのように生成するかをご覧ください。

マグネトロンスパッタリングではプラズマはどのように生成されるのか?高品質薄膜堆積のためのエンジン

マグネトロンスパッタリングにおけるプラズマの生成方法を、制御されたイオン化のカスケードを通じて学び、精密で効率的な薄膜コーティングを可能にします。

薄膜のスパッタリング法とは?優れた薄膜成膜のためのガイド

主要なPVD法であるスパッタリングが、ハイテク用途向けに優れた密着性と材料の多様性を持つ超薄膜で均一な膜をどのように生成するかを学びましょう。

マグネトロンスパッタリングでプラズマはどのように生成されるのか?高効率薄膜成膜の鍵

マグネトロンスパッタリングが磁場を利用して電子を閉じ込め、高密度のプラズマを生成することで、より高速で純粋、かつ効率的な薄膜成膜を実現する方法を学びましょう。

マグネトロンスパッタリングはどのように行われますか?薄膜堆積のためのステップバイステップガイド

プラズマ着火から膜形成までのマグネトロンスパッタリングの5つの主要なステップと、それがどのように精密な薄膜コーティングを可能にするかを学びましょう。

マグネトロンスパッタリングの手順とは?薄膜堆積のためのステップバイステップガイド

真空の作成からプラズマ着火、高効率な薄膜堆積に至るまで、マグネトロンスパッタリングのステップバイステップの手順を学びましょう。

マグネトロンスパッタリングの膜厚はどれくらいですか?正確で機能的な薄膜を実現

マグネトロンスパッタリング膜の厚さは、オングストロームからマイクロメートルまで幅があります。耐摩耗性や光学特性などのために、膜厚を制御する方法を学びましょう。

プラズマスパッタリングプロセスとは?精密薄膜堆積のガイド

プラズマスパッタリングの仕組みを学ぶ:さまざまな基板上に均一で高品質な薄膜を形成するための真空堆積技術。

スパッタリングのパラメーターとは?完璧な薄膜のための4つの主要な変数をマスターする

ターゲット材料、スパッタリングガス、チャンバー圧力、および電力によって薄膜堆積を制御し、優れた結果を得る方法を学びましょう。

スパッタリングにおける圧力の効果とは?優れた成膜品質のための粒子エネルギーの制御

スパッタリング圧力が、成膜プロセスにおける粒子エネルギーと平均自由行程を制御することで、膜密度、密着性、応力にどのように影響するかを学びましょう。

スパッタリングコーティングとは何か、そしてなぜそれを行うのか?Semおよび機能性アプリケーション向けの優れた薄膜を実現する

スパッタリングコーティングがいかにしてSEMサンプル作製のための超薄型で均一な導電性膜や、耐久性のある機能性コーティングを作り出すかを発見してください。プロセスと利点を学びましょう。

成膜におけるスパッタリングプロセスとは?精密薄膜コーティングのガイド

スパッタリング成膜の仕組みを学ぶ:プラズマを用いて均一で密着性の高い薄膜を形成するPVD法で、高度な用途に利用されます。

1ステージ真空ポンプと2ステージ真空ポンプの違いは何ですか?あなたのアプリケーションに最適なポンプを選びましょう

1ステージポンプと2ステージポンプの主な違い(性能、コスト、HVAC、実験室作業、一般用途のどれに最適か)を学びましょう。

なぜ高真空下で物理蒸着が行われるのですか?純度と性能を確保するため

PVDにおいて高真空が不可欠な理由を学び、汚染のない経路を作り出し、純粋で高密度、高性能な薄膜コーティングを実現します。

イオンビームスパッタリングの用途は何ですか?要求の厳しい用途向けに比類のない薄膜品質を実現

精密光学、半導体、先進センサーにおける超高密度で均一な薄膜作製のためのイオンビームスパッタリング(IBS)の主要な用途をご覧ください。

マグネトロンスパッタリング蒸着プロセスとは?効率的な薄膜コーティングのガイド

マグネトロンスパッタリングが磁場を利用して、エレクトロニクス、光学などの用途向けに高品質な薄膜をどのように作成するかを学びましょう。

薄膜技術の材料は何ですか?用途に最適な材料を選択する

金属、酸化物、窒化物、半導体など、薄膜技術の主要材料を探り、ニーズに最適なものを選択する方法を学びましょう。

炭化ケイ素は高い熱伝導率を持っていますか?要求の厳しいアプリケーション向けに優れた熱管理を実現します

炭化ケイ素の熱伝導率(最大490 W/m·K)が多くの金属やセラミックスを凌駕し、高性能な熱管理に理想的である理由をご覧ください。

なぜ炭化ケイ素はより効率的なのか?Sicの優れた材料特性で高電力密度を実現

炭化ケイ素のワイドバンドギャップが、パワーエレクトロニクスにおいてケイ素よりも高い効率、高速スイッチング、優れた熱管理をどのように可能にするかをご覧ください。

スパッタリングとPldの違いは何ですか?薄膜堆積におけるスパッタリング Vs. Pld

薄膜堆積におけるスパッタリングとパルスレーザー堆積(PLD)の主な違いを、スケーラビリティ、化学量論、膜品質を含めて学びましょう。

薄膜光学コーティングにはどのような材料が使用されていますか?精密な光制御のための主要材料

反射防止、ミラー、フィルターに使用される薄膜光学コーティングの誘電体酸化物、フッ化物、金属について探ります。

薄膜光学コーティングのプロセスとは何ですか?レンズとミラーの精密な光制御

PVDやCVDなどの真空成膜技術が、反射防止、高反射、光学フィルターコーティングを作成し、光を精密に操作する方法を学びましょう。

スパッタ損傷とは?薄膜堆積中にデリケートな材料を保護するためのガイド

スパッタ損傷とは何か、PVD中にどのように発生するか、そしてデリケートな光電子デバイスや有機材料をコーティングする際にそれを防ぐための戦略を学びましょう。