よくある質問

Related to: 垂直管式石英管炉

ロータリーキルンの原理とは?高温処理のメカニズムを習得する

ロータリーキルンの核となる原理:効率的な産業用熱処理のための材料輸送、熱伝達、および転化を発見してください。

Cvdダイヤモンドはどのように形成されるのか?原子から原子へとダイヤモンドを成長させる科学

CVDダイヤモンドの成長プロセスを発見:小さなシードから制御された反応炉で完全な結晶になるまで。主要なステップと技術について学びましょう。

雰囲気制御とは何ですか?完璧な環境でプロセスをマスターしましょう

密閉環境における温度とガス組成の正確な制御が、高品質な製造と科学的プロセスをどのように可能にするかを学びましょう。

なぜ炉に水素が使われるのですか?優れた純度と光沢のある仕上がりを実現

水素雰囲気がいかに酸化を防ぎ、不純物を除去し、熱伝達を促進して光輝焼鈍、焼結、ろう付けを実現するかをご覧ください。

歯科材料の焼結において、電子コントローラーはファーネス内でどのように機能しますか?精密焼結の鍵

電子コントローラーが歯科用ジルコニアの焼結におけるファーネスの温度をどのように管理し、耐久性のある修復物のための精密な加熱サイクルを保証するかを学びましょう。

視覚的指標アプローチを使用して陶磁器炉を校正するにはどうすればよいですか?素材固有の精度をマスターする

正確な材料のガラス化を実現し、シャープなマージンと最大限の透明度を確保するために、視覚的指標を使用して陶磁器炉を校正する方法を学びましょう。

アーク溶解のプロセスとは?高温金属溶解の深掘り

アーク溶解プロセスを探る:電気アークがどのように金属を溶解するか、鉄鋼リサイクルにおけるその利用、および産業用途における高周波誘導溶解との比較。

灰分試験の目的は何ですか?材料品質管理ガイド

灰分試験が、無機材料の測定、製品仕様の検証、製造および材料科学における品質管理の保証にどのように役立つかを学びましょう。

食品製品の総灰分含有量はどのように決定されますか?正確なミネラル分析のためのガイド

正確なミネラル分析と品質管理のために、乾式灰化法と湿式灰化法を含む食品灰分含有量を決定する方法を学びましょう。

食品産業における灰化とは?ミネラル含有量分析の重要なプロセス

食品産業における灰化がどのようにミネラル含有量を決定するか、そのプロセス、用途、栄養分析と品質管理における利点について学びましょう。

ベル型焼鈍炉のプロセスとは?効率的な熱処理のためのステップバイステップガイド

優れた材料特性と光沢のある表面仕上げを実現するための、装入から制御冷却までのベル型焼鈍の各段階を学びましょう。

グラフェンの化学堆積とは?高品質フィルムのスケーラブルな製造方法

化学気相成長法(CVD)が、エレクトロニクスおよび産業用途向けに大面積で高品質なグラフェンフィルムをどのように製造するかを学びましょう。

歯科における焼結(シンタリング)とは何ですか?強くて長持ちする補綴物を作るための必須プロセス

高温の炉で加熱することにより、柔らかいジルコニアがどのようにして強靭で精密な歯科用クラウンやブリッジに変貌するかを学びましょう。

歯科におけるセラミックスの用途とは?生体のような耐久性のある修復物を実現する

ジルコニアからポーセレンまで、歯科用セラミックスの種類と、クラウン、ベニア、ブリッジへの応用についてご紹介します。優れた審美性と強度について学びましょう。

歯科用焼結炉の温度は?材料固有の熱サイクルをマスターする

歯科用焼結炉の温度は、単一の数値ではなく、精密なサイクルです。ジルコニアは1450~1550°Cを必要とし、ガラスセラミックスは約850°Cを必要とします。

ジルコニアクラウンの焼結時間は?スピードと強度のトレードオフをマスターする

ジルコニアクラウンの焼結時間は30分から10時間以上と幅があります。材料、炉、修復物の種類が、お客様のニーズに最適なサイクルをどのように決定するかを学びましょう。

磁製るつぼの最高使用温度は何度ですか?ひび割れと汚染を防ぐには

磁製るつぼの安全な使用温度(1150°C)、加熱速度の重要な役割、および熱衝撃を防ぐ方法について学びます。

熱分解プロセスの3つのタイプとは?遅い熱分解、速い熱分解、従来の熱分解を解説

遅い熱分解、速い熱分解、従来の熱分解プロセスの主な違いと、バイオ炭またはバイオオイル生産の目標に合った適切なプロセスを選択する方法を学びましょう。

Cvd金属のプロセスとは?薄膜堆積のためのステップバイステップガイド

前駆体ガスから表面反応に至るまで、CVD金属の全プロセスを学び、実験室用途で高純度かつ均一な金属膜堆積を実現する方法を習得しましょう。

金属の化学気相成長(Cvd)とは?高純度金属コーティングのガイド

化学気相成長(CVD)がいかにして半導体や先進材料向けに均一で高純度の金属薄膜を生成するかを学びましょう。

雰囲気制御炉とは何ですか?酸化を防ぎ、高度な材料加工を可能にする

雰囲気制御炉がどのように酸化を防ぎ、精密なガス環境で焼結や浸炭などの高度なプロセスを可能にするかを学びましょう。

歯科用ポーセレンファーネスとは何ですか?強度と審美性に優れた歯科修復物を作成するための鍵

歯科用ポーセレンファーネスが、精密な焼成、焼結、グレーズ処理によってセラミックパウダーを耐久性のあるクラウン、ベニア、ブリッジへとどのように変換するかをご覧ください。

ジルコニア焼結とは? 永続的で精密な歯科修復物の鍵

ジルコニア焼結が、精密な熱処理と制御された収縮によって、軟らかいミリングされたジルコニアをどのように強靭で高密度な最終修復物に変換するかを学びましょう。

ジルコニア焼結の問題点とは?完璧な適合のために体積収縮をマスターする

歯科修復物における適合不良、反り、強度低下を防ぐため、ジルコニア焼結の20~25%の収縮を制御する方法を学びましょう。

PecvdがCvdよりも優れているのはなぜですか?優れた低温薄膜成膜を実現

PECVDがCVDに比べて持つ主要な利点(低温プロセス、優れた膜制御、高度な製造における高い成膜速度など)をご覧ください。

歯科用バーンアウト炉とは何ですか?完璧な歯科修復物を作るための精密ツール

歯科用バーンアウト炉がいかにしてワックスをきれいに除去し、精密なクラウン、ブリッジ、インプラントを可能にするかを学びましょう。高品質な歯科技工所の成果に不可欠です。

低融点ポーセレンとは何ですか?Pfm修復物における優れた審美性と金属の完全性を実現する

低融点ポーセレンの低い焼成温度(1100℃未満)が、いかに審美性を高め、金属のアンダーテンチャーを保護し、歯科修復物の結果を改善するかを発見してください。

Pecvdの圧力とは?薄膜品質を左右する主要パラメータの習得

PECVDにおける圧力の重要な役割を発見しましょう。通常100mTorrから5Torrの範囲で、膜の均一性、品質、成膜速度を制御します。

化学気相成長(Cvd)の違いとは?Cvdプロセスバリエーションガイド

熱CVD、PECVD、MOCVDなどのCVDプロセスの主な違いを学びましょう。それぞれの長所、温度要件、理想的な用途を理解してください。

プラズマはCvdをどのように強化しますか?低温で高品質な成膜を実現

プラズマ強化CVD(PECVD)が、激しい熱を必要とせずに反応性種を生成することで、感熱性基板への低温成膜をどのように可能にするかをご覧ください。

Rf電源とDc電源の違いは何ですか?アプリケーションに最適な電源の選択

電子の挙動から、ワイヤレス通信やプラズマ処理などの理想的なアプリケーションまで、RF電源とDC電源の主な違いを学びましょう。

焼結接合のプロセスとは?固相接合のステップバイステップガイド

焼結接合がどのようにして材料を溶融させることなく融合させ、熱と圧力を用いて異種材料間に強力で高完全性の接合部を形成するかを学びましょう。

なぜ熱分解プロセスを採用するのですか?高度な技術で廃棄物から価値を引き出す

熱分解がどのように廃棄物をバイオ燃料、化学物質、炭素に変換するかをご覧ください。廃棄物管理、再生可能エネルギー、炭素隔離における主要な利点を学びましょう。

バイオ炭の加工とは?土壌改良と炭素隔離のための緩慢熱分解をマスターする

緩慢熱分解によるバイオ炭の製造方法を学びます。土壌の健康と炭素回収のための温度、時間、原料などの加工変数に関するガイド。

Cvdダイヤモンドのプロセスとは何ですか?ラボグロウンダイヤモンドはいかにして作られるか

化学気相成長法(CVD)が、制御されたラボ環境でプラズマとメタンガスを使用してダイヤモンドを層状に成長させる方法を学びましょう。

Cvdでダイヤモンドをどのように作るのか?原子レベルで高純度ダイヤモンドを成長させる

化学気相成長法(CVD)が、炭素が豊富なガスから制御された真空チャンバー内でどのようにダイヤモンドを成長させ、高純度の結果をもたらすかを学びます。

Cvdコーティングの用途とは?コンポーネントの耐久性と機能性を向上させる

化学気相成長(CVD)が、工具、電子機器、高性能コンポーネントに、いかにして耐久性のある均一な薄膜コーティングを形成するかをご覧ください。

真空化学気相成長(Cvd)とは?高純度コーティングのガイド

真空化学気相成長(CVD)が、工具、電子機器、光学部品向けに超高純度で均一なコーティングをどのように生成するかを学びましょう。

ロータリーキルンでは何が起こるのか?連続高温処理のガイド

ロータリーキルンが焼成、焼結などのために熱と回転をどのように利用するかを学びましょう。主要な構成要素、トレードオフ、そして適切なキルンの選び方を発見してください。

セラミッククラウンの欠陥とは?破折、チッピング、摩耗のリスクを理解する

バルク破折、チッピング、対合歯の摩耗など、セラミック製歯科用クラウンの主な欠陥について学び、十分な情報に基づいて選択しましょう。

Cvdと比較した場合のPecvdの利点は何ですか?低温で高品質な薄膜を実現

プラズマCVD(PECVD)が、熱に弱い材料に対して、より高速かつ低温での薄膜堆積を可能にする方法をご覧ください。

プラズマCvdの温度は何度ですか?熱に弱い材料向けの低温コーティングを実現

プラズマCVDは180℃以下で動作するため、熱に弱いポリマー、プラスチック、合金などに熱損傷を与えることなく高品質なコーティングが可能です。

プラズマCvd(Pecvd)の原理は何ですか?低温薄膜成膜を実現する

PECVDが熱の代わりにプラズマを使用して、温度に敏感な材料に高品質の薄膜を著しく低い温度で成膜する方法を学びましょう。

触媒支援化学気相成長法とは何ですか?低温での精密ナノ構造作製

触媒支援CVDが、いかにして低温での薄膜堆積と、先進材料のためのナノワイヤーやカーボンナノチューブの精密な成長を可能にするかを学びましょう。

化学気相成長(Cvd)の異なる種類にはどのようなものがありますか?最適なCvd法を選択するためのガイド

熱CVD、プラズマCVD、レーザー支援CVDなど、主要なCVD技術を探り、アプリケーションに最適なプロセスを選択しましょう。

グラフェンの化学気相成長法にはどのようなものがありますか?Tcvd、Pecvdなどのガイド

グラフェン合成における主要なCVD法(熱CVD、プラズマCVD、低圧CVDなど)を探求し、アプリケーションに最適なプロセスを選択してください。

グラフェンを作る最も一般的な方法は何ですか?高品質生産のための業界標準を発見してください

化学気相成長法(CVD)は、エレクトロニクスおよび産業用途向けの大型で高品質なグラフェンシートを製造する最も一般的な方法です。

グラフェンはどのようにして大規模生産されるのですか?化学気相成長法(Cvd)による高品質グラフェンのスケールアップ

化学気相成長法(CVD)が、エレクトロニクス、光学、先端材料向け高品質グラフェンの工業規模生産をどのように可能にするかをご覧ください。

ろう付けプロセスの欠点の1つは次のうちどれですか?高温は母材を弱める可能性がある

ろう付けの主な欠点を発見してください。高温は母材を焼きなまし、軟化させ、強度と材料の完全性を損なう可能性があります。

セラミッククラウンは修理できますか?歯科医による損傷評価ガイド

セラミッククラウンの修理が可能な場合、その方法、そして修理と交換の間の主要なトレードオフについて学び、永続的な解決策を見つけましょう。

歯科用セラミックスの3つの種類は何ですか?強度と審美性のための適切な材料を選択する

歯科用セラミックスの3つの主要な種類、すなわちガラスベース、粒子充填ガラスセラミックス、多結晶性セラミックスを発見しましょう。それぞれの長所、審美性、最適な用途を学びます。

後歯列におけるオールセラミック修復物の主な欠点は何ですか?長持ちする結果を得るための破折リスクの克服

後歯のオールセラミック修復物の脆性への対処法を学びましょう。耐久性があり審美的な結果を得るための材料強度と技術を比較します。

化学気相成長(Cvd)プロセスのパラメーターとは何ですか?優れた薄膜のためのCvdを習得する

温度、圧力、ガス流量などのCVDパラメーターを制御して、研究室での薄膜の品質、厚さ、構造を最適化する方法を学びましょう。

化学気相成長法(Cvd)の欠点は何ですか?Cvdを選択する前に考慮すべき主な制限

化学気相成長法(CVD)の主な欠点について掘り下げます。これには、高温、前駆体の安全性、およびラボ用途における物流上の課題が含まれます。

グラフェン製造におけるCvdとは?スケーラブルで高品質なグラフェン合成ガイド

化学気相成長法(CVD)が、エレクトロニクスおよび先進材料向けに高品質な単層グラフェンを工業規模で生産する方法を学びましょう。

誘導炉に必要なライニングの種類は?あなたの金属に合った耐火物を選びましょう

溶融する金属、温度、スラグの化学的性質に基づいて、適切な酸性、塩基性、または中性の誘導炉ライニングを選択し、安全性と効率性を確保する方法を学びましょう。

Cvdの動作原理とは?精密薄膜堆積ガイド

半導体や先進材料への応用における、ガス前駆体から固体薄膜までの化学気相成長(CVD)の仕組みを学びましょう。

さまざまな成膜技術とは?Pvd、Cvd、Aldなどのガイド

PVD、CVD、ALD、および溶液ベースの成膜方法の違いを学びましょう。あなたのアプリケーションに合った薄膜技術を選択してください。

歯科用セラミックスの構成要素は何ですか?優れた修復物のためのガラスと結晶のバランスをマスターする

シリカ、長石、アルミナ、ジルコニアを含む歯科用セラミックスの主要な構成要素と、ガラスと結晶の比率が強度と審美性をどのように決定するかを学びます。

ろう付け装置は何をしますか?精密な強力で永久的な金属接合を作成する

ろう付け装置がどのように毛細管現象と溶加材を使用して金属を接合し、母材を溶融させることなく強力で永久的な結合を作成するかをご覧ください。

化学気相成長法はどのくらい費用がかかりますか?高性能コーティングの真のコストを理解する

CVDのコストを決定する主要な要因(装置、材料、運用費など)と、なぜそれが高価値アプリケーション向けのプレミアムプロセスであるかを学びましょう。

成膜方法とは?材料強化のための薄膜コーティング技術ガイド

PVDやCVDなどの成膜方法について学び、様々な産業で電気的、機械的、光学的特性を向上させるための薄膜の応用について理解を深めましょう。

Cvdプロセスとその詳細とは?化学気相成長(Cvd)技術ガイド

CVDプロセスの段階的な手順、均一なコーティングにおけるその利点、およびエレクトロニクスと材料科学における主要な応用について学びましょう。

超硬工具チップに異なるコーティングが施されるのはなぜですか?性能、耐摩耗性、耐熱性を向上させるため

TiN、TiCN、TiAlNなどの特殊コーティングが、さまざまな材料の超硬工具寿命、耐熱性、加工効率をどのように向上させるかをご覧ください。

成膜技術とは?薄膜アプリケーションのためのPvdとCvdのガイド

PVDやCVDなどの成膜技術の基本を探ります。耐摩耗性、導電性、ナノスケールの精度に応じて適切な方法を選択する方法を学びましょう。

成膜速度とは何を意味するのか?薄膜成膜における速度と品質のバランスをマスターする

成膜速度が薄膜の品質、厚さ、微細構造をどのように制御するかを学びましょう。速度と材料性能との間の重要なトレードオフを理解します。

基板温度の効果とは?薄膜の品質と密着性をマスターする

CVDやその他の成膜プロセスにおいて、基板温度が薄膜の微細構造、密着性、密度、応力をどのように制御し、最適なコーティング性能を実現するかを学びましょう。

合成ダイヤモンドの製造にはどのくらいの時間がかかりますか?ラボで育成された宝石の背後にある6~8週間の科学を発見する

HPHT法とCVD法がどのようにしてわずか6〜8週間で宝石品質の合成ダイヤモンドを作り出し、構造的完全性と輝かしい品質を保証するかを学びましょう。

Cvdのプロセスとは?化学気相成長(Cvd)のステップバイステップガイド

CVDプロセスを学ぶ:ガス前駆体から固体コーティングまで。熱活性化、膜成長、およびエレクトロニクス、工具などの主要な変数を理解する。

Cvd反応のプロセスとは?高性能コーティングのためのステップバイステップガイド

前駆体ガスの導入から膜形成に至るまでの化学気相成長(CVD)のステップバイステッププロセスを学び、優れた固体膜とコーティングを作成する方法を習得しましょう。

温度は成膜速度にどのように影響しますか?速度だけでなく、膜の品質をマスターする

PVDにおいて、成膜速度ではなく基板温度が膜の密度と構造を制御する理由を学びましょう。優れた材料性能のためにプロセスを最適化してください。

成膜には熱が必要ですか?材料に適した薄膜プロセスを解き明かす

成膜における熱の役割を探ります。基板と膜品質のニーズに合わせて、高温CVDと低温PVDのどちらが最適か学びましょう。

グラフェンの製造方法とは?トップダウン合成とボトムアップ合成のガイド

機械的剥離、液相剥離、化学気相成長法(CVD)など、グラフェンを製造するための主要な方法を探ります。

緩慢熱分解の温度はどのくらいですか?高品質バイオ炭生産のために最適化する

緩慢熱分解は、バイオ炭の収量を最大化するために約400°Cで動作します。温度、加熱速度、および持続時間が結果をどのように制御するかを学びましょう。

遅い熱分解の主要生成物は何ですか?炭素隔離のためのバイオ炭の最大化

遅い熱分解は主にバイオ炭を生成します。これは土壌改良材や炭素隔離に使用される安定した炭素豊富な固体です。その仕組みを学びましょう。

還元環境をどのように作成できますか?精密な化学制御のための方法を習得する

気体、液体、固体を使用して還元環境を作成する方法を学びましょう。研究室や工業プロセス向けに、H₂、NaBH₄、DTTなどの還元剤を探求します。

誘導加熱器はアルミニウムを溶融できますか?はい、適切な高周波システムがあれば可能です。

アルミニウムの高い導電性と非磁性という特性が、効率的な溶融のために特殊な誘導加熱器を必要とする理由を学びましょう。

高真空乾燥オーブンは、ポリマー電解質膜の調製においてどのような主な役割を果たしますか?

溶媒除去、安全性、バッテリーの電気化学的安定性を確保するために、ポリマー電解質膜にとって真空乾燥がなぜ重要なのかを学びましょう。

触媒含浸ワークフローにおいて、実験用オーブンが不可欠な理由は何ですか?材料の構造的完全性を確保する

実験用オーブンが触媒の乾燥、構造崩壊の防止、活性成分の均一な分布の確保に不可欠な理由を学びましょう。

固体電池試験に精密実験用オーブンを使用する目的は何ですか?高温安定性を確保する

精密オーブンが固体電池にとって不可欠である理由を学びましょう。ポリマー電解質の活性化から、重要な熱暴走安全性試験の実施まで。

ZrドープCaoにはなぜ制御乾燥を使用するのか?多孔性を維持し、凝集を防ぐ

実験用オーブンでの制御乾燥が、ジルコニウムドープ酸化カルシウム吸着剤の凝集を防ぎ、表面積を最大化する方法をご覧ください。

ナノテクノロジーにおける薄膜堆積技術にはどのようなものがありますか?Pvd、Cvd、Aldの各手法を比較してください。

ナノテクノロジーにおける主要な薄膜堆積技術であるPVD、CVD、ALDについて探ります。あなたのアプリケーションにおける精度、速度、コストのトレードオフを学びましょう。

薄膜はどのように形成されるのか?PvdおよびCvd成膜法のガイド

電子機器、光学機器、コーティングのために、真空環境下でPVDおよびCVD法を用いて原子レベルで薄膜がどのように作られるかを学びましょう。

薄膜はどのように作られるのか?アプリケーションに応じた成膜方法ガイド

PVD、CVD、液相成膜を用いて薄膜がどのように作られるかを学びましょう。エレクトロニクス、光学、コーティングに最適な方法を選択してください。

Sicの利点は何ですか?歩留まり向上とコスト削減を実現

炭化ケイ素(SiC)が、優れた熱安定性、耐プラズマ性、および低い総所有コストによって、いかに効率を高めるかを発見してください。

Cvdとスパッタコーティングの違いは何ですか?適切な薄膜成膜方法を選択する

CVD対スパッタリング:研究室の薄膜アプリケーションにおけるプロセス、温度、コーティング均一性の主要な違いを学びましょう。

燃焼と熱分解の違いは何ですか?廃棄物からの価値を引き出す

燃焼(化燃焼)と熱分解の主な違いである酸素について発見してください。熱分解がいかに廃棄物をバイオ炭やバイオオイルなどの貴重な製品に変えるかを学びましょう。

成膜技術は驚くべき科学的進歩でしょうか?私たちの世界を築く縁の下の力持ち

PVDやCVDのような成膜技術が、原子スケールで物質を精密に制御することで、現代のエレクトロニクス、ソーラーパネル、高度なツールをどのように構築しているかを発見してください。

誘導溶解炉の基本的なライニングは何ですか?安全で効率的な溶解のためのエンジニアードコア

誘導溶解炉における耐火物ライニングの重要な役割を発見してください。これは、溶解プロセスを可能にしながら、溶融金属を封じ込めるものです。

真空成膜技術とは?超薄膜、高性能コーティングの鍵

真空成膜がPVD、CVD、ALDを使用して、汚染のない環境で光学、電子機器などに使用される純粋な薄膜をどのように作成するかを学びましょう。

Cvdの仕組みとは?化学気相成長(Cvd)のステップバイステップガイド

化学気相成長(CVD)が、制御された化学反応を通じて、半導体や先端材料向けに高純度の薄膜をどのように生成するかを学びましょう。

Cvdダイヤモンドと天然ダイヤモンドの違いは何ですか?輝きは同じ、起源は異なる

CVDダイヤモンドと天然ダイヤモンド:化学的には同じですが、CVDはより高い純度と低コストのためにラボで育成されます。あなたのニーズに合ったものを見つけてください。

なぜ化学気相成長法は物理気相成長法より好まれるのですか?複雑な部品に対する優れたコンフォーマル性

CVDが、PVD法に比べて非直視的な利点を提供し、複雑な3D部品に均一で緻密なコーティングを施すために好まれる理由をご覧ください。

薄膜にはどのような種類がありますか?光学、電気、機能性コーティングのガイド

光学、電気、保護膜といった主要な薄膜の種類を探求し、CVDやスパッタリングなどの成膜方法がどのようにそれらを作り出すかを学びましょう。

薄膜はどのように製造されるのか?物理的および化学的成膜方法のガイド

PVDやCVDなどの薄膜成膜方法、その長所と短所、そして用途に合った技術の選び方について学びましょう。

カーボンコーティングは何をするのか?多機能層によるバッテリー性能の向上

カーボンコーティングは、安定性、導電性、サイクル寿命を向上させることで、バッテリー材料を改善します。その主な機能とトレードオフについて学びましょう。

薄膜はどのように成膜しますか?精密コーティングのためのPvdとCvdの方法

PVDとCVD薄膜成膜方法(スパッタリング、蒸着、ALDを含む)の主な違いを学び、アプリケーションに適した技術を選択しましょう。

Cvd装置のプロセスとは?化学気相成長(Cvd)のステップバイステップガイド

前駆体の導入から膜成長までのCVDプロセスの5つの主要な段階と、それがどのように精密で均一なコーティングを可能にするかを学びましょう。

Cvdの成膜速度はどのくらいですか?効率的な薄膜製造における重要な利点

CVDの高い成膜速度を発見してください。これは複雑な部品に効率的で均一なコーティングを施すための重要な要素です。アプリケーションに合わせて最適化する方法を学びましょう。

化学気相成長法(Cvd)はダイヤモンドの製造に使用されますか? はい、高純度のラボグロウンダイヤモンドの成長に使用されます

化学気相成長法(CVD)が、宝石や産業用途のために高純度のダイヤモンドを層状に成長させる方法を学びましょう。