あなたの研究室に高品質の機器と材料を提供する、信頼できる世界規模のサプライヤー!
について
ブログ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
製品
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
会社
私たちについて
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
サービスサポート
お問い合わせ
メニュー
メニューを閉じる
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
ブログ
について
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
よくある質問 -
研究開発用高性能実験室用凍結乾燥機
反応性スパッタリングはどのように機能しますか?優れたコーティングのための薄膜堆積をマスターする
反応性スパッタリングが、光学、電子、保護用途向けの酸化物や窒化物のような高品質セラミック膜をどのように生成するかを学びましょう。
金属スパッタリングでアルゴンガスが使用されるのはなぜですか?高品質で汚染のない薄膜を実現する
アルゴンが、その不活性、最適な質量、高いスパッタリング収率により、効率的で純粋な金属堆積に最適なスパッタリングガスである理由をご覧ください。
半導体プロセスにおけるAldとは?チップ製造における原子レベルの精密さの鍵
原子層堆積(ALD)がどのようにして、高度な半導体向けに超薄型で均一な膜を可能にし、比類のないコンフォーマリティと制御性を提供するのかをご覧ください。
薄膜成膜になぜ真空が必要なのですか?高純度で汚染のない膜を実現するために
真空が薄膜成膜に不可欠な理由を学びましょう。真空は原子のための明確な経路を確保し、汚染を防ぎ、膜の純度と性能を保証します。
真空コーティング技術とは?高性能薄膜のためのガイド
汚染のない環境で、真空コーティングがいかにして耐久性、耐食性、光学性能を向上させるために薄く均一な層を堆積させるかを学びましょう。
熱分解プラントの目的は何ですか?廃棄物を価値ある資源に変換すること
熱分解プラントがいかにして廃棄物プラスチック、タイヤ、バイオマスを、酸素のない熱分解によって燃料油、カーボンブラック、合成ガスに変えるかを学びましょう。
廃プラスチックの急速熱分解とは?廃棄プラスチックを価値あるオイルに変える
急速熱分解がいかにしてプラスチック廃棄物を熱分解オイルにリサイクルし、燃料や化学原料にするのかを学びましょう。これは、酸素のない環境下での急速な加熱を利用します。混合プラスチックに最適です。
熱分解の時間と温度は?目的の製品をターゲットにするための制御パラメーター
熱分解の時間と温度設定が、バイオ炭、バイオオイル、合成ガスといった製品収率をどのように決定し、特定の原料に合わせてそれらを最適化する方法を学びましょう。
熱分解の原料とは?多用途な原料で廃棄物からエネルギーへ
バイオマス、プラスチック、タイヤなど、熱分解の原料についてご紹介します。廃棄物をバイオオイルやバイオ炭などの貴重なエネルギー製品に変換する方法を学びましょう。
薄膜成膜用の基板をどのように洗浄しますか?優れた膜品質のために清浄な表面を実現する
薄膜成膜において、強力な膜密着性、一貫した特性、高いデバイス歩留まりを確保するための基板洗浄における重要な2段階プロセスを学びましょう。
熱分解燃焼の生成物とは?貴重なバイオ炭、バイオオイル、合成ガスを解き放つ
熱分解の3つの主要生成物、すなわち固体のバイオ炭、液体のバイオオイル、合成ガスについて解説します。プロセス条件と原料がどのように生成物を決定するかを学びましょう。
プラスチック廃棄物の熱分解の欠点は何ですか?主な経済的および技術的課題
高エネルギーコスト、設備投資、製品精製における課題など、プラスチック熱分解の主な欠点を探ります。
熱分解の限界とは?主な経済的および技術的課題を解説
熱分解の主な限界を探ります。高コスト、原料の感度、実行可能な廃棄物変換のための複雑な後処理要件などが含まれます。
熱分解は環境に優しいのか?持続可能な廃棄物発電ソリューションの解明
熱分解が、適切に管理された場合に、いかに廃棄物を再生可能エネルギーとバイオ炭に変換し、排出量を削減し、循環型経済を促進するかを探ります。
廃棄物熱分解のプロセスとは?廃棄物を貴重な資源に変えるためのステップバイステップガイド
廃棄物熱分解がどのように機能し、プラスチック、タイヤ、バイオマスを酸素なしでの熱分解によって燃料、ガス、バイオ炭に変えるかを学びましょう。
熱分解とガス化の生成物は何ですか?バイオマス転換の価値を引き出す
バイオ炭、バイオオイル、合成ガスといった、熱分解とガス化の生成物の主な違いを学びましょう。エネルギーまたは材料の目標に応じて適切なプロセスを選択してください。
熱分解はガス化よりも優れているのはなぜですか?多用途で貯蔵可能なバイオ製品のために
熱分解とガス化を比較:熱分解は貯蔵可能なバイオオイルとバイオ炭を生成するのに対し、ガス化は電力のための即時合成ガス生成に焦点を当てます。
焼結プロセスではどのような装置が使用されますか?基本的な炉から高度なHipおよびSpsシステムまで
炉、熱間等方圧プレス(HIP)、放電プラズマ焼結(SPS)などの焼結装置を探索し、材料の密度と強度に適したシステムを選択してください。
ホットフィラメント化学気相成長法(Hfcvd)とは何ですか?高品質薄膜堆積のためのガイド
ホットフィラメントCVD(HFCVD)が、複雑な3D部品向けに高純度のダイヤモンド、カーボンナノチューブ、および耐久性のあるコーティングをどのように作成するかを学びましょう。
誘導焼き入れが可能な金属は?鉄合金と炭素含有量に関するガイド
炭素鋼、合金鋼、工具鋼、鋳鉄など、誘導焼き入れが可能な金属を発見しましょう。炭素含有量がなぜ重要なのかを学びましょう。
誘導炉で水が使われるのはなぜですか?コイルの壊滅的な過熱と故障を防ぐため
水冷システムがどのように誘導炉コイルを過熱から保護し、安全で効率的な溶解作業を保証するかを学びましょう。
誘導コイルはどのように冷却しますか?システムの信頼性と性能の鍵をマスターする
誘導コイルの冷却に不可欠な方法を、水循環から空冷まで学び、故障を防ぎ、一貫した効率的な動作を確保しましょう。
空冷の欠点は何ですか?冷却速度が遅いため、硬度と材料の選択肢が制限されます
空気焼き入れの主な欠点、つまり冷却速度の遅さ、材料の適用範囲の制限、硬度向上の可能性の低下について探ります。
ろう付けフィラーメタルを加える前にろう付け接合部を過熱するとどうなる可能性がありますか?一般的なろう付けの失敗を避ける
ろう付け接合部の過熱がフラックスの故障、母材の酸化、フィラーの流れの悪化を引き起こし、弱くまたは失敗した接合につながる仕組みを学びましょう。
物理的成膜プロセスの概要とは?Pvd薄膜コーティングのガイド
物理気相成長(PVD)が、ソースから基板に至るまでどのように機能し、真空中で純粋で耐久性のある薄膜を生成するための利点について学びましょう。
化学溶液堆積法とは?低コスト薄膜作製ガイド
化学溶液堆積法(CSD)が液体前駆体を用いてどのように薄膜を形成し、気相堆積法に代わる費用対効果の高い方法であるかを学びましょう。
化学浴析出(Cbd)のプロセスとは?薄膜ニーズに応じたCvdとCbdの理解
薄膜用途における化学気相成長(CVD)と化学浴析出(CBD)の主な違いを学びましょう。
熱分解は何に利用できますか?廃棄物を燃料、バイオ炭、合成ガスに変える
熱分解がバイオマス、プラスチック、タイヤをどのようにしてバイオオイル、バイオ炭、合成ガスのような貴重な製品に変換し、エネルギー、農業、化学産業に利用されるかをご覧ください。
廃プラスチック熱分解プラントの利点は何ですか?廃棄プラスチックを貴重な資源に変える
廃プラスチック熱分解プラントがいかにしてリサイクル不可能な廃プラスチックを燃料油やカーボンブラックに変換し、埋立地の使用を削減し、エネルギーを創出するかを発見してください。
熱分解プロセスのリスクとは?環境、運用、経済的課題のガイド
汚染物質排出、不安定なバイオオイル、高エネルギーコスト、廃棄物変換における経済的実現可能性の課題など、熱分解の主なリスクを探ります。
熱分解の環境上の利点は何ですか?廃棄物をエネルギーに変え、気候変動と闘う
熱分解がいかにして埋立廃棄物を削減し、再生可能エネルギーを生み出し、バイオ炭を介して炭素を除去し、持続可能で循環型経済に貢献するかをご覧ください。
熱分解における問題点とは?商業的実現可能性に対する主要な課題
熱分解の核心的な問題点を探る:高コスト、技術的ハードル、不安定なバイオオイル。商業的に実現可能なプロセスにするための障壁を学びましょう。
バイオオイルとバイオ炭の違いは何ですか?目標に合ったバイオマス製品を選びましょう
バイオオイルは液体燃料、バイオ炭は固形土壌改良材です。熱分解がどのように両方を生み出すか、そしてエネルギー、炭素回収、土壌の健康のどれに最適かを知りましょう。
高速熱分解はバイオオイルを60%生成しますか?バイオリファイナリーの生産量を最大化する
高速熱分解で最大60%のバイオオイル収率を達成する方法を学びましょう。原料、反応器設計、プロセス最適化などの主要な要因を探ります。
熱分解システムの利点は何ですか?廃棄物を再生可能エネルギーと収益に変える
熱分解システムがいかにして有機廃棄物をバイオオイル、合成ガス、バイオ炭に変換し、排出量を削減し、新たな収益源を生み出すかを発見してください。
熱分解の長所と短所は何ですか?廃棄物から価値を生み出す可能性を解き放つ
熱分解の長所と短所を探る:廃棄物をバイオオイル、バイオ炭、合成ガスに変換し、エネルギーと炭素隔離に利用。
バイオマスをエネルギーに変換する熱分解の主な利点は何ですか?それは輸送可能な液体燃料を生成します
熱分解は固形バイオマスを貯蔵可能なバイオオイル、合成ガス、バイオ炭に変換し、単一のプロセスから柔軟なエネルギーおよび材料製品を提供します。
高速熱分解の例は何ですか?バイオマスを2秒未満でバイオオイルに変換する
高速熱分解の例:木材チップを500℃で酸素なしで加熱し、数秒でバイオオイル、バイオ炭、合成ガスを生成する。
熱分解によって得られる生成物は何ですか?バイオ炭、バイオオイル、合成ガスのガイド
熱分解が有機物を固体であるバイオ炭、液体であるバイオオイル、気体である合成ガスという3つの主要生成物にどのように変換するか、またプロセスを制御する方法を学びましょう。
熱分解の効果とは?廃棄物を燃料、化学品、エネルギーに変換する
熱分解は、バイオマスやプラスチック廃棄物などの有機材料を熱的に分解し、貴重なバイオオイル、バイオ炭、合成ガスに変換して、エネルギーや化学品として利用します。
熱分解の反応とは何ですか?熱分解による廃棄物からの価値の解放
有機廃棄物から価値あるバイオ炭、バイオオイル、合成ガスを生成するために、酸素なしで材料を熱分解する方法を学びましょう。
熱分解の主な目的は何ですか?廃棄物からエネルギーと価値を引き出す
熱分解が、バイオマスやプラスチックなどの廃棄物を、無酸素熱分解によって貴重なバイオ燃料、化学物質、炭化物に変換する方法をご覧ください。
熱分解は環境にどのような影響を与えますか?カーボンネガティブな廃棄物変換の可能性を解き明かす
熱分解が環境に与える二重の影響を探ります。責任を持って管理すれば炭素隔離と再生可能エネルギーのツールとなり、誤って適用すれば汚染源となります。
プラスチックの熱分解は環境に有害か?それは生成物の管理方法次第である
プラスチックの熱分解は廃棄物処理の解決策にも汚染源にもなり得る。その環境への影響が、油、ガス、炭化物といった有毒な副生成物の制御にどのようにかかっているかを学ぼう。
熱分解は環境に影響を与えますか?廃棄物削減と汚染リスクの二面性から考察
熱分解の二面的な環境への影響を探る:廃棄物を削減し炭素を隔離できる一方で、管理を誤ると汚染のリスクもある。重要な要素を学ぼう。
有機金属化学気相成長法(Mocvd)の利点は何ですか?優れた膜品質と精度を実現
低温プロセス、高純度膜、半導体およびLED製造におけるスケーラビリティなど、MOCVD技術の主な利点をご覧ください。
ラボグロウンダイヤモンドの将来価値は?その減価する金銭的価値を理解する
天然ダイヤモンドとは異なり、ラボグロウンダイヤモンドが技術の進歩と無制限の供給により、時間の経過とともに価値が低下すると予想される理由を学びましょう。
高密度プラズマCvdプロセスとは何ですか?半導体製造における高度なボイドフリーギャップフィルを習得する
HDP-CVDが同時成膜とスパッタリングをどのように利用して、高アスペクト比半導体構造向けの緻密でボイドフリーな膜を形成するかを学びます。
薄膜成膜になぜ真空が必要なのか?純度と精度を達成するための真空の重要な役割
薄膜成膜において、汚染を防ぎ、粒子の移動を保証し、エレクトロニクスや光学分野向けの高性能フィルムを作成するために、なぜ真空が不可欠なのかを学びましょう。
マイクロ波プラズマの応用分野とは?ダイヤモンド合成から半導体製造まで
人工ダイヤモンド合成、半導体製造、環境浄化など、マイクロ波プラズマ技術の主要な応用分野を探ります。
有機金属化学気相成長法(Mocvd)の原理とは?高純度薄膜成長ガイド
MOCVDがどのように有機金属前駆体を使用して、先進的なエレクトロニクスおよびオプトエレクトロニクス用の高純度結晶薄膜を成長させるかを学びましょう。
Pecvdはどこで使用されていますか?先進材料のための低温薄膜堆積の可能性を解き放つ
PECVDが半導体、太陽電池、医療機器で、低温かつ高品質な薄膜堆積にどのように使用されているかを解説します。
Mocvdの成長プロセスとは?エピタキシャル薄膜堆積のステップバイステップガイド
LEDやエレクトロニクスに使用される高品質半導体膜を成長させるための有機金属化学気相成長法(MOCVD)の4つの主要段階を学びましょう。
Mocvdの応用分野とは?高性能Led、レーザー、エレクトロニクスの可能性を解き放つ
LED、レーザー、パワーエレクトロニクス製造におけるMOCVDの応用を探ります。この原子レベルのプロセスがどのように現代のオプトエレクトロニクスと半導体を可能にするかをご覧ください。
融解試料とは?元素分析で比類のない精度を実現
融解試料がいかにして不均一性を排除し、精密なXRFおよびICP分析を可能にするかをご覧ください。そのプロセス、利点、そして主なトレードオフを学びましょう。
成膜技術はなぜ驚異的な科学的進歩なのでしょうか?原子レベルの材料工学を解き明かす
成膜技術が原子スケールでの材料工学をどのように可能にし、現代のエレクトロニクス、先進的なコーティング、次世代のイノベーションを支えているかを発見してください。
半導体デバイス製造で使用されるプロセスとは?マイクロチップ製造のステップバイステップガイド
半導体製造の循環プロセスを発見:成膜、フォトリソグラフィ、エッチング、剥離を繰り返して、マイクロチップを層ごとに構築します。
Pecvdの動作原理とは?低温・高品質な薄膜堆積を実現
プラズマCVD(PECVD)がどのようにプラズマエネルギーを利用して低温での薄膜堆積を実現し、敏感な電子部品や太陽電池に最適なのかを学びましょう。
プラズマCvdの原理は何ですか?低温薄膜堆積を可能にする
プラズマCVD(PECVD)がいかにしてプラズマを利用して、デリケートな基板に理想的な、低温で高品質な薄膜を堆積させるかを学びましょう。
プラズマCvdの欠点は何ですか?低温成膜のトレードオフを管理する
PECVDの主な欠点(イオン衝撃、膜汚染、システムの複雑さなど)を探り、ラボのプロセスについて十分な情報に基づいた意思決定を行いましょう。
アディティブ・マニュファクチャリングの最も適用されている分野はどれですか?プロトタイピングから高付加価値生産まで
航空宇宙、医療、自動車産業向けに、アディティブ・マニュファクチャリングの最も価値の高い用途が、機能的な最終使用部品の製造分野でどのように活用されているかをご覧ください。
熱間静水圧プレス(Hip)は熱処理ですか?その独自の熱機械的プロセスについてのガイド
HIP(熱間静水圧プレス)が熱と圧力を組み合わせて内部の空隙をなくし、材料特性を向上させる方法を発見してください。これは従来の熱処理を超えるものです。
等方圧成形にはどのような利点がありますか?均一な密度と複雑な形状を実現します
均一な密度、等方性強度、複雑な形状の製造能力など、等方圧プレス加工の主な利点をご覧ください。
イオンビーム成膜の欠点は何ですか?速度とスケーラビリティを犠牲にした高精度
イオンビーム成膜の主な制限事項(低い成膜速度、大面積へのスケーラビリティの低さ、高い運用複雑性など)を探ります。
スパークプラズマ焼結(Sps)の目的は何ですか?低温での完全緻密化を達成すること
スパークプラズマ焼結(SPS)が粉末を急速に高密度固体に融合させ、先進材料開発のためにナノ構造を保持する方法をご覧ください。
スパークプラズマ焼結法とは?高速粉末固化技術
スパークプラズマ焼結(SPS)が、パルス直流電流と圧力を利用して、優れた特性を持つ材料を迅速かつ低温で緻密化する方法をご覧ください。
プラズマ焼結法とは?高速・高密度材料作製への道を開く
パルス電流と圧力を用いた先進的な粉末固化技術であるスパークプラズマ焼結(SPS)を発見しましょう。
Pecvdとスパッタリングの違いは何ですか?適切な薄膜成膜方法の選び方
PECVDとスパッタリング:メカニズム、温度、膜特性における主な違いを理解し、研究室の薄膜成膜ニーズに合わせましょう。
プラズマ支援成膜技術とは何ですか?優れた薄膜エンジニアリングを実現する
プラズマ支援成膜がいかにして、エレクトロニクスおよび産業用途向けに、優れた密度、密着性、制御性を備えた高性能コーティングを生成するかを学びましょう。
電子レンジはどのようにプラズマを生成するのか?エネルギー集中の物理学を解き明かす
ブドウのような物体がどのようにアンテナとして機能し、マイクロ波エネルギーを集中させ、空気をプラズマにイオン化する強烈な電場を作り出すかを発見してください。
従来の熱分解とは何ですか?バイオ炭製造のためのスローパイロリシス(緩速熱分解)ガイド
従来の熱分解の仕組み、主要生成物(バイオ炭、バイオオイル、合成ガス)、そして最適な結果を得るためにいつ使用すべきかを学びましょう。
熱分解速度とは?バイオ炭、バイオオイル、合成ガスの最適な生産のための制御の習得
熱分解速度が製品収率をどのように制御するかを学びます。バイオ炭、バイオオイル、または合成ガスの生産を最大化するために、加熱速度、温度、滞留時間を最適化します。
マイクロ波熱分解とは何ですか?廃棄物から価値への変換をより速く、より効率的に実現
マイクロ波熱分解がいかにして体積加熱を利用し、バイオマスやプラスチックをバイオオイル、合成ガス、バイオ炭に迅速かつ正確に分解するかを発見してください。
薄膜技術の利点と応用は何ですか?高度な材料性能を解き放つ
薄膜技術が、導電性、耐久性、光学制御などの特性を持つ材料をどのように強化し、エレクトロニクス、エネルギーなどの分野で活用されているかをご覧ください。
真空薄膜成膜とは?高度な表面工学の鍵
真空薄膜成膜が半導体、光学部品、医療機器、耐久性材料向けに超高純度コーティングをどのように生成するかを学びましょう。
蒸発は製造業でどのように利用されていますか?高性能フィルムによるコーティング製品
産業用蒸着(PVD)がいかにして光学、電子機器、パッケージング向けに薄く機能的なコーティングを生成するかを発見してください。プロセスと用途について学びましょう。
原子層レベルの精度で超薄膜堆積を可能にする堆積技術はどれですか?Aldで完璧な密着性を実現
原子層堆積(ALD)が、原子スケールの精度、3D構造への完璧な密着性、および高度な用途向けの優れた膜品質をどのように実現するかを発見してください。
成膜の厚さは?ナノメートルからマイクロメートルまでのガイド
光学、エレクトロニクス、耐摩耗性における特定の用途に合わせて、ナノメートルからマイクロメートルまでの膜厚がどのように調整されるかを学びましょう。
薄膜をコーティング材料としてどのように使用できますか?精密工学による表面特性の向上
薄膜コーティングがいかにして基板の光学特性、電気特性、機械的特性を向上させ、コスト効率の高い材料工学を可能にするかを発見してください。
半導体における薄膜堆積とは何か?現代エレクトロニクスの核を築く
薄膜堆積が、すべての集積回路、マイクロプロセッサ、メモリチップに不可欠な導電層と絶縁層をどのように作成するかを学びましょう。
薄膜を作成する目的は何ですか?材料に新しい表面特性を付与する
薄膜が、基材のコア特性を変えることなく、導電性、反射性、保護などの特殊な機能をどのように追加するかを発見してください。
半導体における薄膜形成プロセスとは何ですか?CvdとPvdでマイクロチップを構築する
化学気相成長法(CVD)と物理気相成長法(PVD)が、現代の半導体デバイスを構築する薄膜をどのように形成するかを学びましょう。
グラフェンの気相成長とは?スケーラブルで高品質な製造へのガイド
化学気相成長(CVD)がいかにしてエレクトロニクス、センサー、先端材料向けの大面積単層グラフェン膜を生成するかを学びましょう。
化学における「堆積(Deposition)」の意味は何ですか?気体から固体への変化と先端材料工学
化学における堆積の二重の意味、すなわち気体から固体への相転移と、薄膜やコーティングを作成するための主要な製造プロセスについて学びましょう。
スパッタリングの限界とは何ですか?高コスト、低速、材料の損傷
高額な装置コスト、遅い成膜速度、基板の加熱、デリケートな材料への損傷など、スパッタリングの主な限界について探ります。
電子ビーム溶接の産業用途は何ですか?重要部品の精密溶接
航空宇宙、自動車、医療、原子力産業における電子ビーム溶接(EBW)が、深くて高純度の溶接を実現するためにどのように使用されているかを探ります。
バイオマスの熱分解の3つの生成物とは何ですか?バイオ炭、バイオオイル、合成ガスの手引き
バイオマス熱分解の3つの主要生成物である固体バイオ炭、液体バイオオイル、気体合成ガスについて、またプロセス条件がそれらの収率にどのように影響するかを学びましょう。
熱分解の利点は何ですか?廃棄物を高価値のバイオ燃料とバイオ炭に変える
熱分解がいかにしてバイオマスとプラスチック廃棄物を貴重なバイオオイル、バイオ炭、合成ガスに変換し、埋め立て地の利用を減らし、再生可能エネルギーを生み出すかをご覧ください。
なぜPecvdは比較的低温で高い成膜速度を達成できるのでしょうか?効率的で低温での成膜を可能にする方法を解き明かす
PECVDがいかにして熱の代わりにプラズマエネルギーを利用し、敏感な基板上での高速かつ低温の薄膜成膜を実現するかをご覧ください。
ラボグロウン・ダイヤモンドは合法ですか?はい、そしてそれが正当な選択肢である理由を説明します
ラボグロウン・ダイヤモンドは合法であり、採掘されたダイヤモンドと科学的に同一です。主要な宝石学研究所によって認証されています。事実と利点について学びましょう。
CvdとPvd半導体の違いは何ですか?適切な薄膜プロセスを選択するためのガイド
CVD対PVD:半導体製造およびコーティング用途における温度、被覆性、膜品質の主な違いを理解する。
プラスチックを燃料として利用する方法とは?熱分解と光改質で廃棄物をエネルギーに変える
熱分解と光改質が、廃プラスチックを原油や水素などの燃料に変換する方法を学びましょう。手法、適切なプラスチック、トレードオフを探ります。
グラフェンの製造工程とは?高品質生産のためのCvdプロセスの習得
高品質で大面積のグラフェンを製造するための化学気相成長法(CVD)の主要なステップ(前駆体熱分解や格子形成を含む)を学びましょう。
ダイヤモンドライクコーティングはどのように機能するのか?優れた硬度と低摩擦を実現する
ダイヤモンドライクカーボン(DLC)コーティングが、ダイヤモンド結合とグラファイト結合を組み合わせて、卓越した耐摩耗性と潤滑性をどのように実現するかを学びましょう。
バッチ式熱分解と連続式熱分解の違いは何ですか?あなたの規模に合ったシステムを選びましょう
バッチ式と連続式の熱分解システムの主な違いを学び、運用規模と原料に最適な技術を選択してください。
廃棄物熱分解の排出物とは?よりクリーンな廃棄物変換へのガイド
廃棄物熱分解が、焼却とは異なり、いかに最小限の排出物でゴミを有用な製品に変えるかを発見してください。合成ガス、バイオオイル、バイオ炭について学びましょう。
バイオマス変換のプロセスとは?適切な技術で有機廃棄物からエネルギーを解き放つ
熱化学、生化学、化学、物理の4つの主要なバイオマス変換経路を学びましょう。原料と最終製品に合ったプロセスを選びましょう。
熱分解は何度の温度範囲で始まりますか?バイオ炭から合成ガスまでの出力を制御する
熱分解は400℃で効果的に始まります。温度、原料、プロセスパラメータがバイオ炭、バイオオイル、または合成ガスの収率をどのように決定するかを学びましょう。
リグノセルロース材料の熱分解とは何ですか?バイオマスをバイオオイル、バイオ炭、合成ガスに変換すること
熱分解が木材や農業廃棄物をどのようにしてエネルギーおよび材料のための貴重なバイオオイル、バイオ炭、合成ガスに変換するかを学びましょう。
プラスチック廃棄物を燃料に変換することはできますか?その方法、利点、リスクについて解説します。
プラスチック廃棄物が熱分解や光改質によってどのように燃料に変換されるか、その環境上の利点、および関連する主要な課題を探ります。
前へ
Page 5
次へ