溶融試料は、分析化学、特に蛍光X線分析(XRF)、原子吸光分析(AAS)、誘導結合プラズマ(ICP)などの技術で使用される特殊な方法です。
この方法では、白金、ジルコニウム、またはグラファイト製のるつぼ内で、フラックスとして知られる適切な溶媒に、完全に酸化した試料を高温で溶解する。
溶融した混合物は、目的の分析手法に応じて、ガラスディスクを作成するために型に流し込まれるか、溶液を形成するためにビーカーに流し込まれます。
溶融サンプルとは?理解すべき4つのポイント
1.融解のプロセス
高温溶解: 均一な反応性を確保するために完全に酸化された試料は、通常900℃~1000℃の超高温に加熱される。
この高温溶解は、試料をフラックスに完全に溶解させるために必要である。
フラックスの使用: 一般的に四ホウ酸リチウムまたは四ホウ酸/メタホウ酸の混合物であるフラックスは、試料の完全溶解を助ける溶媒として作用する。
フラックスと試料の比率は通常5:1~10:1で、十分な被覆と溶解を確保する。
るつぼの材質: るつぼは、融点が高く、溶融混合物の腐食作用に強いため、白金、ジルコニウム、黒鉛などの材料から作られる。
2.溶融ビーズの形成
試料をフラックスに溶かした後、混合物を型に流し込み、溶融ビーズと呼ばれるガラスディスクを作ります。
このビーズは試料を均質に表現したもので、分析測定の妨げとなる鉱物構造や粒子径の影響はない。
溶融ビーズの厚さは通常3mmで、XRF分析に適した平坦で均一な表面を提供します。
しかし、この厚さは、重元素の無限の厚さの問題につながり、微量元素分析の精度に影響を与える可能性があります。
3.利点と欠点
利点: 溶融試料の主な利点は、鉱物学的および粒子径の影響が排除され、高精度で再現性の高い結果が得られることです。
また、ポリマーから合金鉄まで、さまざまな種類の試料の分析が可能で、校正とマトリックス補正が簡素化される。
欠点: 特殊な装置(フュージョン装置や白金器具)や消耗品が必要なため、このメソッドはコストが高くなる可能性がある。
また、希釈倍率が高いため、微量元素の分析に影響を及ぼすことがある。
4.アプリケーション
溶融ビーズの均一な分布と平坦な表面が正確な元素分析を保証します。
ICPやAASでも使用され、試料は溶融後に溶液として調製されます。
要約すると、溶融試料は、様々な分光学的手法に適した均質な試料を作成することで、分析結果の精度と信頼性を高める高度な調製方法です。
初期費用が高く、分析上の制限もありますが、精度と汎用性の面でメリットがあるため、多くの分析ラボで貴重な技術となっています。
専門家にご相談ください。
溶融サンプルが分析化学プロセスにもたらす精度と信頼性をご覧ください。 KINTEK SOLUTIONでは、XRF、AAS、ICPアプリケーションのサンプル前処理方法を合理化するために設計された、包括的な融解装置と消耗品を提供しています。
KINTEKソリューションで、比類のない精度と効率を実現し、分析能力を高めてください!