テーマ Kbrペレットプレス

KBRペレットプレス

KBR ペレット プレスは、高価な実験室用プレスやペレット ダイを必要とせずに、粉末材料をペレットに圧縮するために使用される手動プレスです。分光分析に使用できる、端が平らな均一な円筒形のペレットを生成するように設計されています。このプレス システムは、大きなスチール カムに取り付けられたレバーに手の圧力を加えて圧縮力を発生させます。ダイを支持するアンビルは、任意の厚さのペレットを生成するように調整できるため、製薬、生物学、栄養、および分光写真操作に従事する研究室に最適です。 KBR ペレット プレスはポータブルでコンパクトで、必要な作業台のスペースはほとんどありません。


当社の KBR PELLET PRESS は、粉末材料をペレットの形に圧縮するための手頃な価格のソリューションです。これはコンパクトな手動プレスで、必要なベンチスペースが非常に小さく、固定設置も必要ありません。当社のプレス システムは、ストロークの最後で最大約 50 対 1 の比率まで着実に増加するメカニカル アドバンテージを提供します。したがって、レバーに 20 ポンドの力が加わると、プレス ラムには約 1000 ポンドの力が加わります。当社の KBR ペレット プレスは、研磨されたダイで均一なペレットを生成し、汚染を起こすことなくスムーズにレシーバーに排出します。お客様の特定の要件に応えるカスタム設計サービスも提供しています。

KBRペレットプレスの用途

  • 製薬、生物学、栄養学、分光分析業務に携わる研究室向けのペレットの製造
  • 発光分光計で分析するための小さなサンプルの準備
  • 研磨されたダイスで均一なペレットを生成し、汚染を起こすことなくスムーズにレシーバーに排出します。
  • 端が平らな円筒形のペレットの作成
  • 可変アンビル設定を使用してペレットに加えられる圧力量を調整する
  • 同量のサンプルを使用し、各ペレットを形成する際にラムをフルストロークさせながらアンビルを固定設定のままにして、同じ密度のペレットを複製します。

KBRペレットプレスのメリット

  • 通常、高価な実験室用プレス機やペレットダイに関連するコストを発生させることなく、粉末材料をペレットの形に圧縮するための費用対効果の高い手段を提供します。
  • 研究室のどこでも使用できるコンパクトな手動プレス機で、必要な作業台スペースが非常に小さく、固定設置も必要ありません。
  • 研磨されたダイスで均一なペレットを生成し、汚染を引き起こすことなくスムーズにレシーバーに排出されます。
  • 製薬、生物学、栄養学、分光写真の操作に従事する研究室向けのペレットの製造に最適です。
  • 分光学者は、このデバイスが発光分光計で分析される小さなサンプルを準備するのに優れていると考えています。
  • 研磨されたダイで端が平らな円筒形のペレットを製造します。
  • ペレットの高さまたは厚さは、圧縮される材料の量と加えられる力に応じて調整できます。
  • 金型は固定されていないため、素早くリロードすることが簡単です。
  • アンビルを上下させて、プレスの最大の力を使用して任意の厚さのペレットを製造できます。
  • 可変アンビル設定は、ペレットに加えられる圧力量を調整する手段として使用できます。
  • 最小限の作業で透明性に優れたKBrペレットを製造できる手動プレス機です。
  • ラボスペースをほとんど必要とせず、持ち運びが可能です。
  • 発光分光計で分析できる小さなサンプルの作成に最適です。
  • 他のラボ用ペレットプレスと比較して、手頃な価格が付属しています。

FAQ

KBrは何に使用されますか?

KBr (臭化カリウム) は、赤外分光法のマトリックスとして研究室で一般的に使用されています。これを有機サンプルと混合し、ベンチトップ型 KBr ペレット プレスなどのプレス機を使用してペレットに圧縮します。得られたペレットは、サンプルの分子構造と組成の分析に使用されます。 KBr は、蛍光 X 線分光法用の無機サンプルの練炭成形や、IR 分光法による透過サンプリング用の加熱プラテンを使用した薄いポリマー フィルムのプレスにも使用されます。これは、製薬、生物学、栄養学、分光学の分野の研究者にとって重要なツールです。

KBrペレット法とは何ですか?

KBr ペレット法は、分光法で固体を分析するために使用される手法です。これには、KBr ペレット プレスと呼ばれるコンパクトな手動プレス機を使用して、粉末材料をペレットの形に圧縮することが含まれます。得られるペレットは円筒形で、任意の厚さにすることができます。この方法は、製薬、生物学、栄養学、および分光分析の操作に特に役立ち、ATR よりも少ないサンプルの使用、より高い信号対雑音比、およびサンプル濃度の変更または光路長の増加による信号強度の制御などの利点を提供します。また、微量汚染物質の検出においても明らかな利点があります。

なぜペレットにKBrが使われるのですか?

KBr(臭化カリウム)は、安定で透明で安価な塩であり、高純度で容易に入手できるため、ペレットの調製に使用されます。サンプルをKBr粉末と混合し、プレスを使用してペレットに圧縮すると、均一な厚さの平らで均一なディスクが形成されます。 KBr ペレットは、赤外光が通過するための明確で再現可能な経路を提供し、サンプルの化学組成の正確な測定を可能にするため、固体サンプルを分析する分光アプリケーションで一般的に使用されます。

FTIR用のKBrペレットの作り方は?

FTIR 用の KBr ペレットを作成するには、ペレット プレス ダイ セット、乳棒、乳鉢、および KBr などの IR 透過媒体が必要です。 KBrとサンプルを乳鉢で混合し、得られた混合物をダイセットと油圧プレスを使用してディスクにプレスします。ペレットは薄く、透明で、少量のサンプルのみが含まれている必要があります。 KBr とサンプルの一般的な比率は 100:1 です。 KBr は吸湿性があるため、乾燥した環境に保管し、吸湿を避けるためにグローブボックスまたは真空ダイを使用して準備する必要があります。

引用を要求

弊社の専門チームが 1 営業日以内にご返信いたします。 お気軽にお問い合わせ下さい!


関連記事

不可能形状の物理学:ホットスタンピングがいかに高強度鋼を再定義したか

不可能形状の物理学:ホットスタンピングがいかに高強度鋼を再定義したか

ホットスタンピングは、加熱・急冷サイクルを使用して超強力で軽量な部品を鍛造することにより、鋼を分子レベルで変容させ、コールドフォーミングでは不可能な加工を実現します。

続きを読む
金型を超えて:コールドアイソスタティックプレス(CIP)の隠れた利点

金型を超えて:コールドアイソスタティックプレス(CIP)の隠れた利点

コールドアイソスタティックプレスが均一な密度の部品をどのように作成し、従来の製造方法の形状的およびコスト的な限界を克服するかをご覧ください。

続きを読む
完璧を支える見えない物理学:熱、圧力、時間のマスター

完璧を支える見えない物理学:熱、圧力、時間のマスター

ホットプレス機の仕組みを深く掘り下げ、品質を定義し、故障を防ぐ熱、圧力、時間の重要な相互作用を探ります。

続きを読む
永久性の物理学:熱プレスがいかに現代世界を形成するか

永久性の物理学:熱プレスがいかに現代世界を形成するか

熱プレスは、制御された熱と圧力を使用して永久的な結合を作成します。この革新的な技術が、エレクトロニクスから先端材料まで、あらゆるものを可能にしている仕組みをご覧ください。

続きを読む
明確化の儀式:ファーネスチューブ洗浄の体系的アプローチ

明確化の儀式:ファーネスチューブ洗浄の体系的アプローチ

ファーネスチューブの洗浄は単なるメンテナンスではなく、キャリブレーションです。石英管とアルミナ管の診断プロセスを学び、汚染を防ぎましょう。

続きを読む
鍛冶溶接が失敗する理由:衝撃よりも圧力の隠された力

鍛冶溶接が失敗する理由:衝撃よりも圧力の隠された力

一貫性のないダマスカス鋼のビレットや、疲れる鍛冶作業にうんざりしていませんか?根本原因を発見し、油圧プレスがその解決策である理由をご覧ください。

続きを読む
革のエンボス加工がうまくいかない理由—そしてそれを永続的に修正する方法

革のエンボス加工がうまくいかない理由—そしてそれを永続的に修正する方法

かすれ、ぼやけ、または焦げ付いた革のエンボス加工に苦労していませんか?失敗する科学的な理由と、完璧で再現可能な結果を得る方法を発見してください。

続きを読む
熱を超えて:高度材料における決定要因としての圧力

熱を超えて:高度材料における決定要因としての圧力

熱間プレスと焼結の間の重要なトレードオフを探る。圧力が材料特性、コスト、プロジェクト成果をどのように変えるかを学ぶ。

続きを読む
圧力のパラドックス:熱間プレス焼結において、より多くが常に最良とは限らない理由

圧力のパラドックス:熱間プレス焼結において、より多くが常に最良とは限らない理由

熱間プレス焼結で圧力を上げると緻密化は速まりますが、異方性のような隠れた欠陥のリスクがあります。このトレードオフをマスターすることが、優れた材料の鍵となります。

続きを読む
形状よりも均一性:コールドアイソスタティックプレス(CIP)の隠された天才性

形状よりも均一性:コールドアイソスタティックプレス(CIP)の隠された天才性

コールドアイソスタティックプレス(CIP)が初期の形状精度を犠牲にして、欠陥のない高信頼性の最終部品に不可欠な均一な密度を実現する理由をご覧ください。

続きを読む
圧力下で鍛造:高耐久性ラボサーフェスの知られざる科学

圧力下で鍛造:高耐久性ラボサーフェスの知られざる科学

ホットプレスラミネートがどのように多孔質で耐薬品性の表面を鍛造し、最新の実験用家具に理想的な基盤となるかをご覧ください。

続きを読む
粉末から高密度へ:熱間プレス成形における微細構造科学

粉末から高密度へ:熱間プレス成形における微細構造科学

熱間プレス成形は単なる材料の成形ではありません。それは、隠れた空隙を除去し、ほぼ完璧な密度と強度を持つ部品を作成する微細工学プロセスです。

続きを読む
圧縮成形部品が破損する理由:焼結炉では修正できない隠れた欠陥

圧縮成形部品が破損する理由:焼結炉では修正できない隠れた欠陥

粉末プレス部品の一貫性のなさに悩んでいませんか?真の欠陥は炉にありません。コールドアイソスタティックプレスがどのように欠陥のない結果を保証するかをご覧ください。

続きを読む
粉末冶金部品が壊れ続ける隠された理由(炉が原因ではない)

粉末冶金部品が壊れ続ける隠された理由(炉が原因ではない)

焼結部品のひび割れにうんざりしていませんか?問題は炉ではありません。真の原因である密度の不均一性を知り、コールドアイソスタティックプレスがどのようにそれを解決するかを学びましょう。

続きを読む
清潔さの幾何学:表面の完全性が電気化学的成功を定義する理由

清潔さの幾何学:表面の完全性が電気化学的成功を定義する理由

電気分解槽のメンテナンスの技術を習得しましょう。段階的な洗浄プロトコルが汚染を防ぎ、実験の再現性を確保する方法を発見してください。

続きを読む
ラボプレスが故障する理由:トン数ではなく、鋼材の問題

ラボプレスが故障する理由:トン数ではなく、鋼材の問題

油圧プレスで一貫性のない結果が得られる隠れた理由を発見してください。安全性と精度にとって、鋼材の選択がトン数よりも重要である理由を学びましょう。

続きを読む
実験用ペレットが割れる理由:完璧なプレスに隠された物理学

実験用ペレットが割れる理由:完璧なプレスに隠された物理学

粉末のせいにするのはやめましょう。実験用ペレットが失敗する本当の理由と、精密油圧プレスが不均一なサンプル前処理を恒久的に解決する方法をご覧ください。

続きを読む
熱の不可視の地理:「最高温度」が落とし穴である理由

熱の不可視の地理:「最高温度」が落とし穴である理由

熱処理において、最高温度はしばしば見栄のための指標です。「均熱ゾーン」がいかに再現性の真の立役者であるかを発見してください。

続きを読む
ラボの油圧プレスが故障し続ける理由(あなたが思っているような理由ではない)

ラボの油圧プレスが故障し続ける理由(あなたが思っているような理由ではない)

ラボの油圧プレスにおける3つの「サイレントキラー」、すなわち偏心荷重や作動油の汚染などを発見し、コストのかかる故障を防ぐ方法を学びましょう。

続きを読む
サンプル前処理が失敗する理由:油圧プレスに潜む隠れた欠陥

サンプル前処理が失敗する理由:油圧プレスに潜む隠れた欠陥

割れたペレットや不安定なラボプレス結果に悩んでいませんか?装置に潜む隠れた材料の欠陥を発見し、それを恒久的に修正する方法を見つけましょう。

続きを読む