反応器の圧力を高めるにはどうすればよいですか?最適な化学プロセス制御のための方法を習得しましょう

ガスの追加、温度の上昇、または体積の減少によって反応器の圧力を高め、反応速度、平衡、相挙動を制御する方法を学びましょう。

オートクレーブなしでガラス器具を滅菌するには?乾熱滅菌のステップバイステップガイド

標準的な実験用オーブンを使った乾熱滅菌によるガラス器具の滅菌方法を学びましょう。ステップバイステップの手順、温度設定、および重要な注意事項をご紹介します。

フィルムの厚さとは?1Mmの閾値と測定単位に関するガイド

フィルムの厚さ(1mm未満)の定義、その測定方法、そしてパッケージング、エレクトロニクス、光学分野における材料性能にとってなぜそれが重要なのかを学びましょう。

焼結は約何度で行われますか?材料の融点に基づいたガイド

焼結温度は材料の融点に相対的であり、通常はTmの60〜80%の範囲です。プロジェクトに適した温度を決定する方法を学びましょう。

プレス型(石膏型)の使い方:一貫性のある陶器の形をマスターする

粘土板の準備から、きれいで均一な結果を得るための型からの外し方まで、陶器のプレス成形に不可欠な手順を学びましょう。

焼成の目的とは?精密な熱処理で材料を精製・変質させる

焼成の目的を発見する:揮発性物質の除去、化合物の分解、および工業用途向けの材料特性の変更を行う熱プロセス。

アルミナは何度で活性化されますか?吸着のための最適な多孔性を解き放つ

アルミナの表面積を最大化し、乾燥剤または触媒担体として使用するための正確な300°C~600°Cの活性化範囲を学びましょう。

オイルフリー真空ポンプが高清浄度を要求される用途に適しているのはなぜですか?清浄度とプロセス整合性にとって不可欠な理由

半導体、研究、医薬品などのデリケートな産業において、オイルフリー真空ポンプが炭化水素汚染を防ぐ上でなぜ重要なのかをご覧ください。

オイルフリーダイヤフラム真空ポンプとは?クリーンで低メンテナンスな真空を実現するための究極ガイド

オイルフリーダイヤフラム真空ポンプの仕組み、デリケートな用途における主な利点、および研究室で選択すべき時期についてご紹介します。

パワープレスにはどのような利点がありますか?高速・大量生産ソリューション

パワープレスの主な利点を発見してください:大量のスタンピングおよびブランキング作業における比類のない速度、精度、および費用対効果。

カーボンナノチューブの合成方法とは?アーク放電、レーザーアブレーション、Cvdガイド

カーボンナノチューブ合成におけるアーク放電、レーザーアブレーション、CVD法を比較します。アプリケーションに応じた純度、スケーラビリティ、コストのトレードオフを学びましょう。

ダイヤモンドを作るには、どのくらいの温度が必要ですか?熱と圧力の力を解き放つ

ダイヤモンド生成に必要な正確な温度を発見:天然およびHPHT、CVDなどのラボ成長法では900〜1600°C。圧力こそが鍵です。

ラボグロウンダイヤモンドと天然ダイヤモンド、どちらが良い?完璧な一石を選ぶための明確なガイド

ラボグロウン vs. 天然ダイヤモンド:見た目は同じでも、起源、価格、倫理、価値が異なります。あなたの優先順位に合うのはどちらかを見つけましょう。

Mocvdの例は何ですか?高性能Ledとレーザーの主要プロセス

MOCVDが、優れた材料品質のために原子レベルの精度で高輝度LEDや半導体レーザーを製造するためにどのように使用されるかを発見してください。

コアレス型誘導溶解炉の用途は何ですか?クリーンで精密な金属溶解を実現する

コアレス誘導溶解炉の用途を探る:鉄、鋼、銅、アルミニウムの溶解、合金化、真空精錬により、優れた金属品質と純度を実現します。

誘導炉の用途は何ですか?高純度で効率的な金属溶解を実現

高純度、高効率、精密な温度制御で金属を溶解、保持、加工するための誘導炉の主要な用途を探ります。

フィルタープレス機の構成部品は何ですか?効率的なろ過のための4つの主要コンポーネント

フィルタープレスの4つの主要部品(フレーム、プレート、ろ布、油圧システム)について学びましょう。固液分離におけるそれぞれの役割を理解します。

フィルタープレスケーキの固形分は何で構成されていますか?投入スラリーの直接的な反映です

フィルタープレスケーキの固形分とは、スラリーから圧縮・脱水された固形物のことです。その組成は、業界やプロセスによって完全に異なります。

油圧プレスの安全率はどのくらいですか?それは単一の数値ではなく、システムです。

油圧プレスの安全性は、単一の安全率の値ではなく、構造設計、油圧制限、および適切な操作によって定義される理由を学びましょう。

フィルタープレスの構成とは?凹型チャンバーとメンブレンの違いを解説

凹型チャンバー式とメンブレン式フィルタープレスの構成を比較します。それぞれの仕組み、長所と短所、そして脱水ニーズに合った適切な選択方法を学びましょう。

Ftirにおける試料調製法とは?試料に合った適切な技術を選択する

FTIRの主要な試料調製法であるKBr錠剤法、ATR法、反射法について学びましょう。正確で効率的な分析のために、試料の種類に合わせましょう。

押出成形グラファイトは何に使用されますか?産業プロセスにおける費用対効果の高い導電性

押出成形グラファイトの主な用途を学びましょう。その方向性のある導電性と費用対効果を活用し、電気アーク炉電極から発熱体まで。

食品産業における油圧プレスの用途は何ですか?優れた分離と保存を実現

ココアパウダーの製造、コールドプレスジュース、オイル、高圧殺菌における食品加工での油圧プレスの使用方法をご覧ください。

油圧システムの一般的な故障は何ですか?プロアクティブなメンテナンスで高額なダウンタイムを防ぐ

油圧システム故障の主な3つの原因(作動油の汚染、過熱、漏れ)について学びましょう。これらの一般的な問題を診断し、予防する方法を発見してください。

熱は油圧システムにどのように影響しますか?性能と信頼性を静かに蝕むもの

過剰な熱が、流体の粘度低下、摩耗の加速、コンポーネントの故障を引き起こし、油圧システムをいかに破壊するかを学びます。メンテナンスに不可欠です。

メカニカルプレスの用途は何ですか?大量生産のための高速スタンピング

主要なメカニカルプレスの用途を発見:自動車およびエレクトロニクス製造における大量金属スタンピング、ブランキング、コイニング、および浅絞り。

ハンマー鍛造と比較した場合のプレス鍛造の利点は何ですか? 優れた内部完全性を実現する

プレス鍛造の遅く均一な圧力が、大型で複雑な部品に対して、いかに優れた結晶構造、寸法精度、性能をもたらすかを発見してください。

高温用途にはどの断熱材が使用されますか?用途に合った適切な材料を選びましょう

ミネラルウール、セラミックファイバー、耐火断熱レンガなどを比較します。炉、キルン、産業プロセスに最適な高温断熱材を選択してください。

熱分解のエネルギー効率はどのくらいですか?それは単一の数値ではなく、システムです。

熱分解の効率は変動します。原料、技術、および生成物(バイオオイル、合成ガス、バイオ炭)の使用が、プロセスの正味エネルギー利得をどのように決定するかを学びましょう。

熱分解中に何が起こるか?廃棄物を価値ある製品に変換するためのガイド

熱分解が、酸素なしで有機材料を熱分解し、エネルギーおよび化学製品のためにバイオ炭、バイオオイル、および合成ガスを生成する方法を学びましょう。

プラスチック熱分解の課題とは?原料から燃料までの主な障害

原料の汚染、低品質な油の生成、高コスト、環境問題など、プラスチック熱分解の主な課題を探ります。

熱分解の負の影響とは?高コストと環境リスクを解説

熱分解の主な欠点を探ります。これには、高い設備投資コスト、エネルギー需要、そして不適切なプロセス制御や原料調達に起因する環境リスクが含まれます。

ジルコニアの焼結時の収縮率はどれくらいですか?20~25%の寸法変化をマスターする

ジルコニアが焼結中に20~25%収縮する理由、収縮率でそれを制御する方法、そしてコンポーネントの完璧なフィットと強度を保証する方法を学びましょう。

金属産業における焼鈍(アニーリング)プロセスの用途は何ですか? 製造のために応力を除去し、延性を高めることです。

焼鈍熱処理プロセスが金属を軟化させ、内部応力を除去し、成形性や機械加工性を向上させるために延性を高める方法を学びましょう。

焼なましには3つの種類があります。適切な熱処理を選択するためのガイド

超臨界、臨界間、亜臨界焼なましプロセスと、それらが延性や硬度などの材料特性にどのように影響するかについて学びます。

水素アニーリングの温度は何度ですか?金属部品を脆化から守る

水素アニーリングは、溶接やコーティング後の鋼などの金属に閉じ込められた水素を除去し、脆化を防ぐために200°Cから300°Cで行われます。

誘導炉での溶解プロセスとは?電磁力を活用した効率的な金属溶解

誘導炉が電磁場を使って金属を直接溶解し、迅速な加熱、精密な制御、優れた合金均一性を提供する仕組みを学びましょう。

Cvdでグラフェンはどのように製造されますか?制御された大規模合成のガイド

化学気相成長法(CVD)が、銅やニッケルなどの金属触媒上で高品質のグラフェンを生成し、エレクトロニクスや研究にどのように利用されているかを学びましょう。

誘導加熱になぜ高周波が必要なのですか?精密な表面レベルの熱制御のため

誘導加熱における高周波が、表皮効果を介して精密な表面硬化、ろう付け、および小型部品の効率的な加熱をどのように可能にするかをご覧ください。

誘導加熱の最高温度は何度ですか?溶解・熱処理で1800℃以上を達成

1800℃以上の能力から、材料特性やるつぼ設計などの主要因まで、誘導加熱の実用的な限界を発見してください。

チタンは産業のどこで利用されていますか?航空宇宙、医療、化学分野を支える

チタンの強度対重量比、耐食性、生体適合性によって推進される、航空宇宙、医療、化学処理における主要な産業用途を探ります。

誘導炉の選び方:容量、電力、周波数の一致ガイド

最適な溶解速度と効率を得るために、容量、定格電力、周波数、材料の種類に基づいて適切な誘導炉を選択する方法を学びましょう。

焼きなましは材料を強化しますか?製造性を高めるために軟化が鍵となる理由

焼きなましは、加工性(加工のしやすさ)を向上させ、内部応力を除去するために材料を軟化させます。これが機械加工、成形、安定性にとって極めて重要なステップである理由を学びましょう。

焼鈍しは遅いプロセスですか?熱処理における制御された冷却の重要な役割

焼鈍しが意図的に遅い理由と、材料の柔らかさ、延性、応力除去を実現するために、その制御された冷却段階が不可欠である理由を学びましょう。

焼鈍は材料にどのような影響を与えますか?金属およびセラミック部品に望ましい特性を実現する

焼鈍が、制御された熱処理によって金属やセラミックの延性を改善し、応力を緩和し、導電性を高める方法を学びましょう。

なぜステンレス鋼は加工が難しいのか?より良い結果を得るためにその独自の特性をマスターする

ステンレス鋼の高い加工硬化性、低い熱伝導率、そして強固な酸化膜が製造を困難にする理由と、これらの問題を克服する方法を学びましょう。

パルスDcスパッタリングはDcスパッタリングよりも優れていますか?アークフリー成膜のためのガイド

導電性材料または絶縁性材料に対して、パルスDCとDCスパッタリングのどちらを使用すべきかを学びましょう。アークの発生を防ぎ、安定した高品質の薄膜を実現します。

金属加工の利点と欠点は何ですか?比類のない強度と設計の柔軟性を解き放つ

金属加工の主なトレードオフを探る:優れた強度と耐久性 対 高コストと長いリードタイム。プロジェクトのために十分な情報に基づいた決定を下しましょう。

焼結炉で使用される重要な温度制御にはどのようなものがありますか?優れた材料のための精密な熱プロファイルの習得

焼結炉におけるインテリジェント温度コントローラーと熱電対の重要な役割を発見し、精密な材料特性と運用安全性を実現します。

油圧プレスが作動しないのはなぜですか?一般的な問題を診断・修理するためのステップバイステップガイド

油圧プレスの故障を診断:油圧作動油、機械部品、電気系統を確認します。動作が遅い、弱い、または作動しないプレスを修理する方法を学びましょう。

真空の校正とは?プロセスにおける正確な圧力測定の確保

真空校正は、基準器に対してゲージの精度を検証し、重要なアプリケーションにおけるプロセスの完全性、再現性、およびコンプライアンスを保証します。

熱分解によるバイオ炭の製造方法は?バイオマスを価値ある炭素リッチな炭に変える

熱分解が、酸素のない制御された熱分解によって、有機廃棄物をバイオ炭、バイオオイル、合成ガスにどのように変換するかを学びましょう。

木材熱分解にはどのくらいの時間がかかりますか?バイオ炭、バイオオイル、または合成ガスの場合、数秒から数日

木材熱分解の時間は、数秒から数日までと幅があります。急速熱分解は数秒でバイオオイルを最大化し、緩速熱分解は数時間または数日かけてバイオ炭を生成します。

スパッタリングの長所と短所とは? 膜品質、速度、コストのバランス

薄膜成膜におけるスパッタリングの長所と短所を探ります。優れた膜品質、材料の多様性、そして速度とコストとのトレードオフについて解説します。

焼結炉と焼結とは?より強力な材料のための精密熱処理

焼結炉がどのようにして制御された熱と雰囲気を用いて粉末材料を固体の部品に結合させ、強度と密度を高めるかをご覧ください。

Xrf用のプレス成形ペレットの調製方法:信頼性の高いサンプル分析のためのステップバイステップガイド

正確な結果を得るための粉砕、結合、圧縮技術を含む、XRF分析用プレス成形ペレットを調製するための4ステッププロセスを学びましょう。

廃棄物処理におけるプラズマアーク技術とは?高温廃棄物変換ガイド

プラズマアーク技術が極度の熱を利用して廃棄物をクリーンエネルギーと不活性スラグに変換し、従来の処理方法に代わる優れた選択肢となる方法を学びましょう。

Semにはスパッタコーティングが必要ですか?鮮明で高解像度のイメージングのための必須ガイド

ポリマーやセラミックなどの非導電性サンプルのチャージングを防ぎ、画質を向上させるために、SEMスパッタコーティングが必要となる場合について学びましょう。

Sem用スパッタコーティングの厚さはどのくらいですか?最適なコーティング厚で完璧なSem画像を実現

SEMで帯電を防ぎ、画質を向上させ、分析に適した材料を選択するための理想的なスパッタコーティング厚(2-20 nm)を学びましょう。

Cvdダイヤモンドコーティングの厚さはどのくらいですか?最適な性能のための耐久性と応力のバランス

CVDダイヤモンドコーティングが通常10~20μmの厚さである理由、そして優れた耐摩耗性と内部応力管理のバランスがアプリケーションにとってなぜ重要なのかを学びましょう。

誘導炉で高周波が使用されるのはなぜですか?精密、迅速、効率的な金属溶解のために

誘導炉における高周波が、表皮効果を介してどのように強力な表面加熱を生み出し、迅速な溶解と優れた冶金制御を可能にするかをご覧ください。

タングステンは優れた発熱体ですか?真空環境下での極限温度の解禁

タングステンが持つ高い融点(3422℃)が、なぜ高温の真空炉や金属蒸着に理想的である一方、外気中では不向きなのかを発見してください。

Cvdダイヤモンドはどのように製造されますか?精密なプラズマで自家製ラボグロウンダイヤモンドを育成する

CVDダイヤモンド製造プロセスのステップバイステップを学びましょう。ガスからプラズマを使用して固体へ、数週間で本物のダイヤモンドを作成します。ラボグロウンジェムの背後にある科学を理解しましょう。

セラミックス製造において、等方圧成形が通常の単軸プレスよりも優れているのはなぜですか?優れた密度と複雑な形状を実現

等方圧成形が、単軸プレスが持つ限界を克服し、高性能部品のために均一な密度と複雑な形状を実現できる理由を発見してください。

薄膜技術の材料は何ですか?用途に最適な材料を選択する

金属、酸化物、窒化物、半導体など、薄膜技術の主要材料を探り、ニーズに最適なものを選択する方法を学びましょう。

スパッタリングターゲットはどのように作られるのか?超高純度材料から高性能薄膜まで

スパッタリングターゲットの2つの主要な製造経路、すなわち金属の溶解プロセスとセラミックスの粉末冶金について学びましょう。高純度と高密度を実現します。

油圧を力に変換するにはどうすればよいですか?最大のパワーを得るためのコアとなる公式を習得しましょう

油圧を計算するための簡単な公式「力 = 圧力 × 面積」を学びましょう。プレス機のトラブルシューティング、設計、安全な操作に不可欠です。

Dlcコーティングはどのように適用されますか?精密真空成膜プロセスを深く掘り下げる

PECVDまたはPVD法を用いて真空チャンバー内でDLCコーティングがいかに適用され、極度の硬度、耐摩耗性、低摩擦性を実現するかを学びましょう。

熱分解はバイオ炭に何をもたらすのか? それはバイオ炭を生成し、定義するプロセスです

熱分解の温度と加熱速度がバイオマスをバイオ炭にどのように変換し、土壌、炭素隔離、ろ過のための特性を決定するかを学びましょう。

スパッタリングターゲットの厚さはどのくらいですか?プロセスに適した厚さを指定するためのガイド

スパッタリングターゲットの厚さが3mmから25mmまで異なる理由と、システムの性能と寿命に合った適切なサイズを選択する方法を学びましょう。

Rfスパッタリングのプロセスとは?絶縁材料のコーティングガイド

RFスパッタリングが交流電場を使用して、セラミックスや酸化物などの非導電性材料に薄膜を堆積させる方法を学びましょう。

スパッタリング成膜とは?高純度薄膜コーティングのガイド

スパッタリング成膜の仕組み、エレクトロニクスや製造業における主要な用途、高純度薄膜を実現するための利点について学びましょう。

バイオマス熱分解の研究とは?廃棄物を価値あるバイオ炭、バイオオイル、合成ガスに変換する

バイオマス熱分解が、酸素のない環境で有機物を熱分解し、エネルギーと土壌の健康のためにバイオ炭、バイオオイル、合成ガスを生成する方法を学びましょう。

電気抵抗加熱はどれほど効果的ですか?使用点では100%の効率です。

電気抵抗加熱は、電気を熱に変換する効率は100%ですが、システム全体の効率ははるかに低くなります。トレードオフについて学びましょう。

焼結セラミックスとは?粉末を高性能材料へと変えるプロセス

焼結プロセスがいかにして、過酷な用途に対応する優れた機械的強度と熱安定性を持つ、強靭で耐久性のあるセラミック部品を製造するかを学びましょう。

熱分解装置の機能は何ですか?廃棄物を燃料、ガス、バイオ炭に変換する

熱分解装置が酸素のない環境で廃棄物を熱分解し、燃料油、合成ガス、バイオ炭などの貴重な資源を生成する方法を学びましょう。

熱分解のプロセス説明とは何ですか?廃棄物からエネルギーへの転換の可能性を解き放つ

バイオ炭、バイオオイル、および合成ガスを生成するために、熱分解が酸素の存在しない状態で有機材料を熱的に分解する方法を学びましょう。プロセスとその制御に関する完全なガイド。

熱分解速度とは何か?バイオ炭、バイオオイル、合成ガスの収率を制御するための重要な変数

熱分解における加熱速度と滞留時間が、バイオ炭、バイオオイル、または合成ガスといった生成物の収率をどのように決定するかを理解しましょう。目的に合ったプロセスを選択してください。

熱分解のライフサイクルアセスメントとは?その真の環境影響を解明するガイド

ライフサイクルアセスメント(LCA)が、原料から最終製品の使用まで、熱分解の環境性能をどのように評価するかを学びましょう。

液相焼結の利点は何ですか?より速く、より高密度で、より強度の高い部品を実現

液相焼結がどのようにして高密度化を加速し、温度を下げ、粉末冶金部品の機械的特性を向上させるかを発見してください。

マイクロ波熱分解と従来の熱分解の違いは何ですか?プロセスに最適な加熱方法を選択する

マイクロ波熱分解と従来の熱分解の主な違い(加熱メカニズム、効率、スケーラビリティ、特定の原料に対する製品品質)を学びましょう。

イオンビームスパッタリングのプロセスとは?高精度な用途向けに優れた薄膜品質を実現

イオンビームスパッタリングが、光学、半導体、および優れた密着性を持つ先進材料向けに、高密度で均一な薄膜をどのように作成するかをご覧ください。

流動層プロセスの利点は何ですか?優れた温度制御と効率を実現

比類のない温度均一性、急速な熱・物質移動、および産業プロセスの連続運転を含む、流動化の主な利点を探ります。

フリーシンタリングとは? 粉末から固体部品へのシンプルで費用対効果の高い道筋

フリーシンタリングを発見しましょう。これは、熱のみを使用して粉末成形体を高密度で固体の部品に変換する、無加圧の熱プロセスです。

金属薄膜の用途は何ですか?チップから太陽電池まで、現代のテクノロジーを支える

金属薄膜が、その特有の電気的、光学的、機械的特性を活用して、マイクロチップ、ミラー、太陽電池、センサーなどをどのように実現しているかを探ります。

蒸着技術にはどのような材料が使用されますか?薄膜堆積材料のガイド

アルミニウムや銀などの蒸発材料、タングステンなどの耐火性装置部品を含む、熱蒸着の主要な材料を発見してください。

グラフェンはどのように成長させますか?用途に合った適切な方法を選択してください

CVDや剥離を含むトップダウンおよびボトムアップのグラフェン合成方法を比較し、研究または生産ニーズに最適な技術を選択してください。

グラフェンの調製方法は?トップダウン法とボトムアップ合成を解説

トップダウン法(剥離)とボトムアップ法(CVD)のグラフェン調製方法を探ります。用途に応じて、品質、スケーラビリティ、コストのトレードオフを学びましょう。

Cvdによるグラフェンの製造方法は?高品質グラフェンの産業規模生産を解き明かす

CVD(化学気相成長法)が、銅やメタンガスなどの金属触媒を用いて、どのようにして大面積の単層グラフェンを合成するかを学びましょう。

高速熱分解プロセスの重要な特徴は何ですか?バイオオイル収率を最大化し、効率的なバイオマス変換を実現する

高速熱分解の主要な特徴(高い加熱速度、短い蒸気滞留時間、精密な温度制御など)を学び、バイオオイル生産を最大化しましょう。

焼成分解の温度は何度ですか?材料固有の範囲に関するガイド

焼成温度は単一の値ではなく、材料に依存する範囲です。プロセスに最適な温度を決定する方法を学びましょう。

温度は熱分解にどのように影響しますか?バイオ炭から合成ガスまでの主要な生成物収量

温度が熱分解の生成物をどのように制御するかを学びましょう:低温ではバイオ炭、中温ではバイオオイル、高温では合成ガス。

熱分解の問題点とは?高コスト、技術的課題、環境リスク

高エネルギー消費、設備投資コスト、製品精製の複雑さ、排出ガス制御の必要性など、熱分解の主要な課題を探る。

熱分解プロセスの欠点は何ですか?エネルギー、コスト、製品安定性における主要な課題

熱分解の主な欠点として、高いエネルギー使用量、設備投資、および高価なアップグレードを必要とする不安定なバイオオイル副産物について探ります。

熱分解油の副産物とは何ですか?3つのコプロダクトすべての価値を引き出す

熱分解油には副産物はありません。バイオオイル、バイオ炭、合成ガスという3つの価値あるコプロダクトと、それらの価値を最大化する方法を発見してください。

ココナッツシェルの熱分解によるバイオオイル収率に影響を与える要因は何ですか?4つの主要なパラメータを制御する

熱分解温度、加熱速度、蒸気滞留時間、および原料特性がココナッツシェルバイオオイルの収率と品質をどのように決定するかを学びましょう。

熱分解とは何か、そして熱分解のプロセスとは?廃棄物を貴重な資源に変える

熱分解がいかにしてバイオマスやプラスチックを酸素なしで熱分解し、バイオオイル、バイオ炭、合成ガスを生成してエネルギーや材料に利用するかをご覧ください。

熱分解生成物の用途とは?バイオオイル、バイオ炭、合成ガスから価値を引き出す

熱分解生成物の用途を発見:燃料としてのバイオオイル、土壌改良材・材料としてのバイオ炭、エネルギーとしての合成ガス。廃棄物を価値あるものに変える。

温度が熱分解生成物に及ぼす影響とは?熱制御による主要生成物収率の習得

温度と加熱速度が、バイオ炭、バイオオイル、または合成ガスの熱分解生成物分布をどのように決定するかを学びましょう。最大の収率を得るためにプロセスを最適化します。

熱分解からの排出物とは?廃棄物を価値ある制御可能な製品に変える

熱分解は従来の排出物を発生させませんが、価値あるバイオ炭、バイオオイル、合成ガスを生成します。これらの生成物を目標に合わせて制御する方法を学びましょう。