あなたの研究室に高品質の機器と材料を提供する、信頼できる世界規模のサプライヤー!
について
ブログ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
製品
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
会社
私たちについて
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
サービスサポート
お問い合わせ
メニュー
メニューを閉じる
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
ブログ
について
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
よくある質問 -
黒鉛真空炉 高熱伝導率フィルム黒鉛化炉
プラチナは蒸発しますか?高温安定性と材料損失の理解
プラチナが極端な温度でいつ、なぜ蒸発または質量を失うのかを理解することは、実験器具、産業、宝飾品用途にとって重要です。
熱処理は密度を変化させますか?はい、そしてそれが精密加工において重要である理由
オーステナイトからマルテンサイトへの相変態など、熱処理が材料密度をどのように変化させるかを学び、製造における寸法安定性への影響を理解しましょう。
金属を熱処理できる回数は何回ですか?材料の完全性の限界を理解する
脱炭、結晶粒の成長、鋼や合金の歪みのリスクなど、金属の熱処理サイクルを制限する要因について学びます。
真空熱処理サイクルにはどのくらいの時間がかかりますか?それは材料と部品のサイズによって異なります
真空熱処理サイクルの時間は、数時間から1日以上に及びます。材料、部品の厚さ、負荷サイズなど、期間を決定する主要な要因について学びましょう。
真空熱処理とは?優れた材料性能と完璧な仕上がりを実現
真空熱処理がいかに酸化を防ぎ、材料特性を向上させ、高性能部品の再現可能な結果を保証するかを学びましょう。
真空熱処理とは何ですか?完璧で高性能な金属部品を実現する
真空熱処理が酸化や脱炭を防ぎ、重要な部品に対して優れた機械的特性とクリーンな表面仕上げを保証する方法を学びましょう。
熱容量が高いと融点も高くなるのでしょうか?重要な違いを解き明かす
いいえ、熱容量と融点は独立した特性です。高い熱容量が高い融点を保証しない理由と、適切な材料の選び方について学びましょう。
真空チャンバー内で物を加熱できますか?無気環境下での精密な熱処理をマスターする
伝導と放射を利用して真空中で物体を加熱する方法を学びましょう。抵抗加熱、放射加熱、誘導加熱などの方法を探り、汚染のない結果を得ましょう。
等方性黒鉛の製造プロセスとは?比類ない材料の均一性と性能を実現
CIP成形から2800℃の黒鉛化まで、等方性黒鉛の多段階製造プロセスを発見し、優れた等方性特性を実現します。
対流は熱伝達においてどのような役割を果たしますか?流体中の熱移動を理解する
流体の移動による熱の伝達方法である対流、そのメカニズム、そして日常生活や工学における応用について学びましょう。
焼結は拡散を利用しますか?より強固な材料を構築するための原子メカニズム
焼結が粉末粒子を密な固体に結合させるために原子拡散にどのように依存しているかを発見し、材料特性の正確な制御を可能にします。
液相存在下、焼結が容易になるのはなぜですか?より速く、より低温での緻密化を実現する
液相焼結が、毛細管力と物質輸送を利用して、焼結が困難な材料に理想的な低温での高密度化をどのように達成するかを学びましょう。
真空密封石英管管式炉的使用意义是什么?掌握陶瓷合成
了解管式炉和真空密封石英管为何对于合成碘钒铅陶瓷和控制碘挥发性至关重要。
炉の原理とは?抵抗加熱、誘導加熱、真空加熱による熱の習得
炉の基本原理を発見しましょう:汎用性のための抵抗加熱、スピードのための誘導加熱、純度のための真空加熱。適切な熱処理プロセスを選択してください。
真空熱処理プロセスとは何ですか?高性能金属の純度と精度を実現する
真空熱処理が、いかにして酸化、脱炭、脆化を防ぎ、優れた金属特性と表面仕上げを実現するかを学びましょう。
真空熱処理の欠点とは?高コストと技術的限界を解説
高額な設備コスト、遅い冷却速度、特定の合金に対する材料の制約など、真空熱処理の主な欠点を探ります。
高灰分は良いことですか?ペットフードのミネラルレベルを理解するためのガイド
ペットフードにおける灰分とは何か、高レベルが品質の危険信号となる理由、そしてペットの健康のために最適な食事を選ぶ方法を学びましょう。
真空熱処理はなぜ行われるのか?清浄な表面で優れた金属特性を実現
真空熱処理が酸化や脱炭を防ぎ、優れた表面仕上げ、強化された機械的特性、高い工程一貫性をどのように実現するかを発見してください。
炉を掃除機で掃除してもいいですか?安全で効果的なHvacメンテナンスのためのDiyガイド
効率向上のために掃除機をかけても安全な炉の部品と、専門家を呼ぶべき時を学びましょう。必須の安全手順と掃除のヒントが含まれています。
真空中の電気アークとは?高電圧技術のためのプラズマ活用
真空アークがどのようにして気化した金属から導電性プラズマを形成するかを発見してください。スイッチング、コーティング、高電圧工学におけるその応用を学びましょう。
熱伝達効率に影響を与える要因は何ですか?熱管理システムを最適化する
温度差、材料特性、表面積が伝導、対流、放射における熱伝達にどのように影響するかを学びましょう。システムの効率を最適化します。
熱伝達としての放射の目的は何ですか?真空中で非接触加熱を実現する
放射が電磁波を介して熱を伝達し、産業用および実験室用アプリケーションで真空中の非接触加熱を可能にする方法を発見してください。
熱処理の機能とは?優れた性能のために金属特性を調整する
熱処理が、制御された加熱および冷却プロセスを通じて、硬度、靭性、安定性などの金属特性をどのように変化させるかを発見してください。
熱伝達に影響を与える要因とは?最適な熱性能のための主要変数をマスターする
正確な熱制御のために、温度差、材料特性、表面積が伝導、対流、放射にどのように影響するかを学びましょう。
カーボンとグラファイト、どちらが優れていますか?用途に合った適切な素材を選びましょう
カーボン対グラファイト:剛性、耐久性、コストの主な違いを理解し、プロジェクトのニーズに最適な素材を選択しましょう。
真空焼入れとは何ですか?クリーンで酸化のない表面仕上げで最大の硬度を実現
真空焼入れが表面酸化なしで金属の硬度をどのように向上させるかを学びます。お使いの材料のニーズに合わせて、ガス焼入れと油焼入れの方法を比較します。
ステンレス鋼ろう付けに必要な温度は何度ですか?合金固有のろう付けに関する決定版ガイド
オーステナイト系およびマルテンサイト系グレードを含む、さまざまなステンレス鋼合金の適切なろう付け温度を学び、母材を損傷することなく強力な接合を確実にします。
真空炉の最高温度はどれくらいですか?先進材料のための熱限界の追求
真空炉がいかにして2200°Cまでの極限温度に達するか、そしてその性能がいかにホットゾーンの設計、加熱方法、制御システムによって決まるかを発見してください。
真空ろう付けはどのように機能しますか?優れたフラックスフリー金属接合を実現
真空ろう付けがフラックスなしでいかに強力でクリーンな金属接合を生み出すかを学びましょう。航空宇宙、医療、高性能用途に最適です。
焼鈍(アニーリング)を行うと材料はどうなりますか?より柔らかく、加工しやすい材料への手引き
焼鈍が鋼、銅、アルミニウムなどの金属の内部応力を緩和し、延性を高め、機械加工性を向上させる方法を学びましょう。
どのような金属が焼鈍(アニーリング)の対象となりますか?鋼、銅、真鍮、アルミニウムの延性を回復させる
加工硬化を元に戻すために焼鈍が役立つ金属を発見しましょう。鋼、銅、真鍮、アルミニウムの延性がどのように回復し、成形性や機械加工性が向上するかを学びます。
すべての金属は焼きなましできますか?最適な材料特性のための熱処理プロセスを習得する
加工硬化の解消から、延性や被削性を向上させるための結晶構造の変態まで、さまざまな金属に対する焼きなましの仕組みを学びましょう。
焼鈍の長所と短所は何ですか?戦略的な材料加工ガイド
焼鈍の長所と短所を探る:延性の向上、応力除去、被削性の改善と、硬度の低下、時間、コスト。
金属を焼鈍(アニーリング)するとどうなるか?より柔らかく、加工しやすい金属へのガイド
焼鈍が金属の内部結晶構造を修復することで、どのように金属をより柔らかく、延性(展延性)を高めるかを学びましょう。金属加工や機械加工に不可欠なプロセスです。
アニーリング(焼鈍)はどの産業で使用されていますか?自動車から医療機器まで
自動車、医療、鍛造、電気産業におけるアニーリングの使用方法を探り、金属を軟化させ、加工性を向上させます。
焼きなましは金属の特性をどのように変化させますか?加工性を回復させ、性能を向上させる
焼きなまし熱処理が金属を軟化させ、延性を高め、応力を緩和し、電気伝導率を向上させて製造を改善する方法を学びましょう。
焼きなまし(アニーリング)の2つの種類とは?完全焼きなましと加工焼きなましを解説
金属の完全焼きなましと加工焼きなまし(プロセスアニーリング)の主な違いを学びましょう。延性と生産効率を最適化するために、それぞれの方法をいつ使用すべきかを理解します。
真空ろう付けプロセスのパラメータとは?優れた接合部を実現するための4つの鍵をマスターする
クリーンで強力なフラックス不要の接合部を実現するために、温度、保持時間、加熱/冷却速度、真空レベルという4つの重要な真空ろう付けパラメータを学びましょう。
焼入れの危険性とは?材料の破損と人身事故を防ぐ
部品の反り、亀裂、火災の危険、窒息など、焼入れの重大な危険性について学び、安全で効果的な熱処理を確保しましょう。
焼鈍(アニーリング)の種類は何ですか?金属の特性に合った適切なプロセスを選択する
金属の延性、被削性、安定性を向上させるための完全焼鈍、工程焼鈍、球状化焼鈍、応力除去焼鈍について学びましょう。
焼鈍プロセスで何が変わるのか?3つの主要な微細構造段階ガイド
焼鈍の3つの段階:回復、再結晶、粒成長について学びましょう。各ステップがどのように応力を緩和し、材料特性を変化させるかを理解します。
焼なましされる製品とは?熱処理による「リセット」が必要な金属ガイド
鋼、アルミニウム、インコネルなどの金属が、延性の回復、応力除去、最終製造工程への準備のために焼なましされる理由を学びましょう。
焼鈍熱処理の欠点は何ですか?金属の軟化におけるトレードオフの管理
焼鈍の主な欠点(高いエネルギーコスト、表面酸化、長い処理時間など)を探り、代替方法を選択すべき時を学びましょう。
熱処理はどのように腐食を防ぐのでしょうか?均一な微細構造を実現し、腐食攻撃を阻止する
熱処理が、弱点を溶解し、応力を緩和し、劣化に強い均一な金属構造を作り出すことで、どのように腐食を防ぐのかを学びましょう。
アニーリングには異なる種類がありますか?金属に最適なプロセスを選択しましょう
完全焼鈍、加工焼鈍、応力除去焼鈍、球状化焼鈍を探求します。それぞれの種類が延性や応力除去といった特定の材料特性をどのように達成するかを学びましょう。
焼鈍(アニーリング)を利用する産業は?製造業におけるその重要な役割のガイド
航空宇宙、自動車、医療、エネルギー分野における焼鈍の不可欠な役割を発見し、材料の加工性向上と安全性の確保に貢献します。
焼きなましは何度で行われますか?材料別熱処理ガイド
応力除去、軟化、または結晶粒微細化を実現するために、鋼からアルミニウムまで、焼きなまし温度が材料やプロセスによって異なる理由を学びましょう。
焼なましの3つの段階とは?金属特性を最適化するためのプロセスを習得する
焼なましの3つの主要な段階、すなわち回復、再結晶、粒成長について学びます。これらの段階を制御して、応力を軽減し、金属の延性を向上させます。
金属を焼きなましする理由は何ですか?延性の回復と被削性の向上
金属焼きなましの主要な利点を発見してください:加工硬化の解消、延性の向上、被削性の改善、内部応力の緩和。
焼鈍(アニーリング)の注意事項とは?精密な熱処理のための4つの鍵をマスターする
望ましい材料特性を達成するために、焼鈍における4つの重要な注意事項(温度制御、熱均一性、保持時間、冷却速度)を学びましょう。
蒸着実験中にどのような予防措置を講じるべきですか?高真空、高温の安全性を習得する
蒸着実験室のための必須安全プロトコル:適切なPPEと手順で、高真空、極端な温度、高電圧のリスクを管理します。
真空焼入れと通常焼入れの違いは何ですか?用途に合った適切なプロセスを選択しましょう
工具鋼やステンレス鋼などの金属における、真空焼入れと通常焼入れの主な違い(表面品質、コスト、プロセス制御)を比較します。
黒鉛の機械的特性とは?剛性の活用と脆性の管理
黒鉛の機械的特性を探る:卓越した剛性、寸法安定性、高強度と、産業用途における固有の脆性とのバランス。
鋳造プロセスにおける焼入れ(クエンチング)とは何ですか?優れた金属硬度を実現するためのガイド
焼入れが金属の硬度と強度を固定するためにどのように急速に冷却するかを学びましょう。最適な結果を得るためのプロセス、媒体、トレードオフを探ります。
濃度はIrにどのように影響しますか?定量分析とスペクトル解釈を習得する
濃度がIRピークの強度と形状にどのように影響するかを学び、正確な分光法におけるBeer-Lambertの法則の限界を理解します。
ろう付け加熱の方法とは?生産ニーズに合った適切な方法を選択する
トーチ、炉、高周波、浸漬、抵抗ろう付けの各方法を比較します。材料、量、品質要件に最適な加熱技術を選択する方法を学びましょう。
スパッタリングにおけるRf周波数とは?絶縁材料の標準を解き明かす
セラミックスや酸化物などの非導電性材料を干渉なしに成膜するための標準RFスパッタリング周波数が13.56 MHzである理由をご覧ください。
真空焼入れは通常の焼入れよりも優れていますか?精度とコスト効率の比較ガイド
真空焼入れと通常の焼入れプロセスを比較します。コスト効率の高い標準焼入れと、優れた表面仕上げのための高精度な真空焼入れのどちらを選択すべきかを学びましょう。
真空中の伝導とは?物質がない状態での熱伝達を理解する
真空中で伝導が不可能な理由と、熱がどのように熱放射によって伝達されるのか、そして宇宙で機能する唯一のメカニズムを発見してください。
熱伝達に媒体を必要とするものは何ですか?伝導と対流の解説
伝導と対流が熱伝達に媒体を必要とする理由、そして放射が真空を伝播できる理由を学びましょう。熱システム設計に不可欠です。
熱伝達の3つの例とは?伝導、対流、放射を解説
熱伝達の3つの種類、伝導、対流、放射について学びましょう。料理から気候科学まで、実際の例を挙げてそれらがどのように機能するかを解説します。
焼鈍(アニーリング)の時間はどれくらいですか?完璧な材料特性を得るための時間設定ガイド
焼鈍時間は数時間から数日と幅があります。材料の厚さ、種類、およびプロセス段階(加熱、保持、冷却)が所要時間をどのように決定するかを学びましょう。
焼入れの長所と短所は何ですか?硬度の最大化 Vs. 脆性および歪みの管理
金属焼入れの主な長所と短所を学びましょう:優れた硬度と耐摩耗性を実現しますが、脆性、歪み、亀裂のリスクを管理する必要があります。
なぜ伝導は真空中で起こらないのか?熱伝達における粒子の本質的な役割
伝導には、熱を伝達するための粒子の衝突が必要です。真空は空間が空であるため、この媒体を欠いており、強力な熱絶縁体となります。
チューブ炉の温度制御はグラフェンの品質にどのように影響しますか?最適な熱ウィンドウをマスターする
ハイブリッドフィルム作製における高品質グラフェン合成を保証する、700℃~900℃の精密なチューブ炉温度制御について学びましょう。
熱処理の冷却プロセスとは何ですか?優れた材料特性を得るための焼入れをマスターする
熱処理における冷却速度が、焼入れから焼きなましに至るまで、ラボでの用途における金属の硬度、強度、延性をどのように決定するかを学びましょう。
クエンチ中に考慮しなければならない安全対策は何ですか?窒素制御による安全な真空油焼入れを確実にする
火災、汚染を防止し、冶金品質を確保するための窒素逆流を含む、真空油焼入れに関する重要な安全対策を学びましょう。
真空炉の構成要素は何ですか?優れた熱処理を実現するためのコアシステムを習得する
真空炉の主要コンポーネント(真空チャンバー、排気システム、加熱・冷却システム、精密な熱処理のための統合制御)を探ります。
真空炉の最高温度は何度ですか?それはあなたの材料とプロセスのニーズ次第です
加熱エレメントと断熱材が真空炉の最高温度をどのように決定するかを発見してください。ろう付け、焼結、熱処理などの用途に合わせて、1150°Cから2500°C超まで対応します。
Ir分光法の限界とは?正確な分析のための境界線を理解する
IR分光法の主な限界(双極子モーメントの規則、水の干渉、定性的な制約など)を探り、効果的な分子分析のために理解を深めます。
試料を融解させるのに必要な熱量を計算するには、どのような方程式を使用しますか?融解熱の公式をマスターする
融解熱の式 (q = m * ΔH_f) を使用して試料を融解させるのに必要なエネルギーを計算する方法を学びます。一般的な落とし穴と段階的な例も含まれています。
真空焼き入れとは?優れた表面品質と硬度を実現
真空焼き入れがいかに酸化を防ぎ、クリーンで寸法安定性に優れた金属部品を生み出すかをご覧ください。航空宇宙、医療、工具産業に最適です。
ろう付けのために鋼を加熱するのに必要な温度はどのくらいですか?ろう材の主要な範囲
鋼のろう付けには、ろう材の融点によって1100°F~2150°Fに加熱する必要があります。銀、銅、ニッケル合金について学びましょう。
酸化グラフェンに対する温度の影響とは?精密な材料特性のための熱還元をマスターする
温度が酸化グラフェン(GO)を導電性のrGOに変換する方法を学びましょう。最適な結果を得るための主要な温度段階、メカニズム、およびトレードオフを探ります。
真空炉の真空度はどれくらいですか?プロセスに合った適切な真空度を選びましょう
粗真空から超高真空までの真空炉の圧力レベルと、材料および用途に最適なシステムを選択する方法について学びましょう。
プラズマ物質の密度とは?宇宙で最も広範囲な密度を探る
プラズマの密度は、ほぼ真空から固体より高密度まで多岐にわたります。密度ではなくイオン化がプラズマを定義する理由とその応用について学びましょう。
ろう付けが不可能な接合部があるのはなぜですか?一般的なろう付け不良を克服するためのガイド
表面汚染から材料の不適合まで、ろう付けが失敗する主な理由と、常に強力で信頼性の高い接合部を確保する方法を学びましょう。
自動車産業におけるろう付けの活用法:現代の自動車向けに強力で漏れのない部品を製造する
ろう付けが自動車の熱交換器、エンジン部品、センサーに不可欠である理由を探り、複雑なアセンブリにおいて強力で信頼性の高い接合部を提供する。
真空熱処理の利点は、スケールや脱炭の低減ですか?清浄でクリーンな金属部品を実現します。
真空熱処理が反応性ガスを除去することで、スケールや脱炭をどのように排除し、優れた表面完全性を確保し、後処理を削減するかを学びましょう。
最適なろう付け結果を得るために最も重要なことは何ですか?完璧な接合のための4つの柱をマスターする
清浄度、ギャップ制御、ろう材の選択、温度管理という4つの主要な柱を習得することで、強力で信頼性の高いろう付け接合を実現します。
ステンレス鋼ろう付けに必要なものは?完璧な接合のための3つの鍵をマスターしましょう
ろう付けの3つの必須要素(熱源、フィラーメタル、酸化物管理)を学びましょう。強力な接合のためにクロム酸化物のバリアを克服する方法。
エネルギーはどのようにしてバイオマスに変換されるのでしょうか?再生可能エネルギーのための自然の太陽光発電の活用
光合成がどのように太陽光をバイオマス(再生可能なバイオエネルギーの基盤)に変換するかを発見してください。そのプロセス、効率、および応用を学びましょう。
Llzo/Lltoにはなぜ1000℃以上の炉が必要なのか?セラミック電解質の高温焼結をマスターする
LLZOやLLTOのような酸化物セラミック電解質において、密度とイオン伝導性を達成するために1000℃を超える温度が不可欠である理由を学びましょう。
黒鉛炉の用途とは?高温材料加工と合成に不可欠
黒鉛炉の用途を探る:合金の溶解、セラミックスの焼結、炭素の黒鉛化、グラフェンの合成を精度と効率で行います。
真空中でアーク放電は発生しますか?はい、そして高電圧設計でそれを防ぐ方法をご紹介します。
電極表面から真空アークがどのように形成されるかを学び、粒子加速器や宇宙船のような高電圧アプリケーションにおける予防のための主要な戦略を発見してください。
真空中でアーク放電が発生する原因は?適切な材料管理で高額なシステム障害を防ぐ
電界、表面の微細な不完全性、汚染物質が真空アークをどのように引き起こすかを学びます。信頼性の高い高電圧システム性能を実現するための防止戦略を発見してください。
バイオマスエネルギーはなぜ効率が悪いのか?低エネルギー燃料の隠れたコスト
バイオマスエネルギーの主な非効率性、すなわちエネルギー密度の低さ、高い水分含有量から、重大な変換損失や土地利用の問題までを探ります。
黒鉛材料の利点は何ですか?極限環境下での優れた熱的・電気的性能
黒鉛の主な利点:優れた熱伝導性、高温での強度、エネルギー効率、および産業用途におけるコスト効率性を発見してください。
ろう付けプロセスとは? 強力で多用途、かつ美しい接合のためのガイド
ろう付けプロセスがどのように機能するか、その利点、用途、そしてなぜそれが精密接合や異種材料接合に最適なのかを学びましょう。
真空炉の圧力とは?材料の精密なプロセス制御を実現する
粗真空から超高真空までの真空炉の圧力が、焼結、ろう付け、熱処理における材料の純度と品質をどのように制御するかを学びましょう。
真空炉の高温とは?材料加工の範囲を解き放つ
真空炉の高温範囲(標準的な538°Cから特殊な2200°C以上まで)と、それが材料加工にどのように影響するかをご覧ください。
真空ろう付けの用途は何ですか?重要部品に強力でクリーンな接合を実現
航空宇宙、医療機器、熱システムにおける真空ろう付けが、複雑なアセンブリの完全性の高いフラックスフリー接合にどのように使用されているかをご覧ください。
ろう付けの真空レベルとは?完璧な接合のための重要なバランスをマスターする
強力で信頼性の高い金属接合のために、酸化防止と材料の蒸発のバランスを取りながら、ろう付けに適切な真空レベルを選択する方法をご覧ください。
真空ろう付けは何に使用されますか?比類のない純度と強度で重要なコンポーネントを接合する
真空ろう付けが、航空宇宙、医療、高性能エレクトロニクス向けに、いかに超クリーンでフラックスフリーの接合部を生成するかを学びましょう。複雑なアセンブリに最適です。
高温炉の種類にはどのようなものがありますか?ボックス型、チューブ型、誘導型、真空型のガイド
ボックス型、チューブ型、誘導型、真空型といった高温炉の種類を探ります。チャンバー設計、加熱方法、雰囲気制御がそれぞれの用途をどのように決定するかを学びましょう。
真空炉はどれくらいの高温になるのか?プロセスのための適切な温度を見つける
真空炉の温度範囲(800℃~2200℃以上)と、特定の用途や材料に合わせて適切な種類を選択する方法について学びましょう。
高温炉は何でできているのか?グラファイト対耐火金属の解説
高温炉の構造に使用されるグラファイトや耐火金属などの主要材料と、それらが性能とコストにどのように影響するかについて学びましょう。
真空の温度を測定できますか?「空っぽの」空間の物理学を解き明かす
真空の温度に関する科学を探求します。理論上の完全な真空から、現実世界の真空や宇宙放射線の測定可能な温度まで。
高温炉はFe-Cr-Mn-Mo-N-C複合材料の合成後熱処理にどのように貢献しますか?
1250℃の高温炉がFe-Cr-Mn-Mo-N-C複合材料を均質化し、微細構造と結合を強化して優れた性能を発揮する方法をご覧ください。
真空熱間プレス炉を使用する技術的な利点は何ですか?グラフェン・アルミナ複合材料の強化
真空熱間プレス(VHP)がアルミナセラミック複合材料の高い緻密化とグラフェンの完全性をどのように保護するかをご覧ください。
前へ
Page 2
次へ