あなたの研究室に高品質の機器と材料を提供する、信頼できる世界規模のサプライヤー!
について
ブログ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
製品
サンプルの準備
静水圧プレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
ガラス素材
バイオ化学装置
ロータリーエバポレーター
ガラスリアクター
高圧反応器
短経路蒸留
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
知識
会社
私たちについて
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
サービスサポート
お問い合わせ
メニュー
メニューを閉じる
サンプルの準備
静水圧プレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
ガラス素材
バイオ化学装置
ロータリーエバポレーター
ガラスリアクター
高圧反応器
短経路蒸留
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
知識
ブログ
について
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
よくある質問 -
ダイヤフラム真空ポンプ
拡散真空ポンプとは?クリティカルな用途に超高真空を実現
拡散真空ポンプの仕組み、その利点、半導体製造や宇宙シミュレーションなどの業界での応用について学びます。
拡散ポンプの真空度とは?精密アプリケーションのための超高真空を実現する
拡散ポンプがどのようにして10^-3から10^-9 Torrの真空レベルを達成するのか、その動作原理、高真空産業における主な用途についてご紹介します。
真空ポンプで何ができるか?ラボの効率化に不可欠なアプリケーション
液体のろ過、ガスのサンプリング、蒸気圧の低減など、研究室における真空ポンプの多彩な用途をご覧ください。お客様のニーズに合ったポンプの選び方をご紹介します。
真空ポンプはどの業界で使用されていますか?主要な分野にわたるその多用途性を発見してください
食品飲料、半導体、医療、航空宇宙などの業界で真空ポンプが精度と効率を高めるためにどのように使用されているかをご覧ください。
真空圧力の単位は何ですか?正確な測定のための主要な単位の説明
最も一般的な真空圧力単位 (パスカル、トール、atm、mmHg) と科学および産業におけるそれらの応用について学びます。
拡散ポンプのデメリットとは?主な課題と限界の説明
高いコスト、コンタミネーションへの敏感さ、ガスハンドリングの制限など、拡散ポンプの欠点を発見し、十分な情報に基づいた真空システムの選択を行う。
真空ポンプの校正はどのように行うのですか?正確な性能を保証するステップバイステップガイド
正確な真空レベル、信頼性の高い性能、長寿命を実現するラボ用真空ポンプの校正方法をご紹介します。専門家によるガイドに従ってください。
真空ポンプはなぜ産業で使われるのか?主な用途と利点
真空パッケージングから半導体プロセスに至るまで、産業における真空ポンプの重要な役割と、それが生産性と精度に与える影響を学びます。
真空ポンプの性能を向上させるにはどうすればよいですか?研究室の効率と信頼性を向上
適切なメンテナンス、コンポーネントの理解、アプリケーション固有の選択を通じてラボ用真空ポンプのパフォーマンスを最適化する方法を学びます。
低温真空とは?- 6つの利点
計測機器の真空システムはどのような圧力値で動作しますか?キー範囲の説明
低真空から超高真空までの計測機器における真空システムの圧力範囲と、分析、産業、研究現場でのその応用について学びます。
低温真空とは何ですか?その用途と利点を探る
低温真空とは何か、その主要な用途、そしてそれが材料科学、エレクトロニクス、量子コンピューティングなどの業界にどのようなメリットをもたらすのかを学びましょう。
真空蒸着法とは?高純度薄膜の発見
エレクトロニクス、光学、コーティングにおいて、高純度で精密な薄膜を成膜するPVD技術である真空蒸着についてご紹介します。
真空蒸着技術とは何ですか?材料蒸着の精度と多用途性
真空蒸発の仕組み、半導体や食品加工などの産業における応用例、精密な材料蒸着における利点についてご紹介します。
スパッタリング真空の圧力とは?最適な薄膜形成のための重要な洞察
高真空からミリTorrまでのスパッタリング真空チャンバーにおける、高品質薄膜成膜のための臨界圧力範囲についてご紹介します。
真空ボイラーとは?産業用精密熱処理
真空ボイラーがどのように真空環境で作動し、工業プロセスにおいて正確かつ効率的で、酸化のない熱処理を実現しているかをご覧ください。
産業における真空技術の応用とは何ですか?精度と効率を解放する
真空技術が、航空宇宙、自動車、医療などの産業において、精度、効率、コンタミネーションのないプロセスでどのように革命を起こしているかをご覧ください。
真空圧はどのように測定されますか?正確な結果を得るテクニックとツールを発見する
真空圧力の測定方法、真空計などの機器、科学や産業におけるそれらの応用について学びます。
真空ポンプの真空度を高めるにはどうすればよいですか?専門家のヒントで効率を向上
最適なパフォーマンスを得るために、メンテナンス、漏れチェック、適切な機器の選択によってラボ用ポンプの真空レベルを高める方法を学びましょう。
どうやって真空圧を維持するのですか?ラボ用真空ポンプの効率に関する重要なヒント
毎日、毎週、毎月チェックして研究室の真空圧を維持し、真空ポンプの最適なパフォーマンスと寿命を確保する方法を学びましょう。
熱蒸着圧力とは?高品質薄膜のための重要な洞察
OLEDや太陽電池などのアプリケーションにおける熱蒸着成膜圧力、成膜純度、成膜速度、プロセス効率におけるその役割についてご紹介します。
一段真空ポンプと二段真空ポンプの違いは何ですか?最適な真空ポンプを見つける
設計、性能、用途など、1段式真空ポンプと2段式真空ポンプの主な違いをご覧ください。お客様の要件に適したポンプをお選びください。
真空の校正とは?産業用アプリケーションで精度を確保する
焼戻し、コーティング、炉の操作などのプロセスにおいて、真空校正がどのように精度、一貫性、信頼性を確保するかをご覧ください。
真空昇華法とは何ですか?熱に弱い物質を高精度に精製
真空昇華がどのように液相をバイパスして熱に敏感な材料を精製するかを学びます。医薬品、食品加工、材料科学に最適です。
温度は真空圧にどのように影響しますか?最適な真空システムのための重要な洞察
温度が蒸気圧を通じて真空圧にどのような影響を与えるかを学び、産業および科学用途向けに真空システムを最適化します。
真空中の残留ガスの分圧を測定するために使用できる装置は何ですか? Rga を発見する
残留ガス分析装置 (RGA) が真空中の分圧を測定する方法、その用途、利点、制限について学びます。
真空ゲージの校正は可能ですか?システムの正確な圧力測定
真空計の校正が精度、システム効率、業界標準への準拠にとって不可欠である理由を学びましょう。
圧力と真空の関係は何ですか?真空システムを最適化して最高のパフォーマンスを実現
圧力と真空がどのように反比例の関係にあるのか、また、最適な真空レベルを維持することが磁器炉のようなシステムにとって重要である理由を学びましょう。
真空圧はどのくらいにすべきですか?焼結炉を最適化して高品質の結果を得る
焼結炉の理想的な真空圧力を決定する方法、それに影響を与える要因、および最適なパフォーマンスを実現するためのメンテナンスのヒントを学びます。
真空は蒸気圧にどのように影響しますか?材料加工の精度を解放する
真空によってどのように蒸気圧が低下し、航空宇宙やエレクトロニクスなどの業界で低温での正確な材料加工が可能になるかを学びましょう。
コンプレッサーの用途とは?産業と日常生活の原動力
製造業、HVAC、自動車、航空宇宙など、コンプレッサーの多様な用途をご覧ください。現代技術に欠かせない
遠心分離機の種類と用途は?研究室または業界に適した遠心分離機を見つける
遠心分離機の種類、用途、研究室や産業界のニーズに合った遠心分離機の選び方をご紹介します。
排水処理用メンブランフィルタープレスとは?効率的な汚泥脱水とコンプライアンス
メンブレンフィルタープレスがどのように廃水処理で固形物と液体を分離し、高効率、低水分のフィルターケーキ、そして環境コンプライアンスを保証しているかをご覧ください。
真空の温度を測定できますか?マスター真空炉温度制御
一貫した結果を得るために、熱電対、PID コントローラー、高度なシステムを使用して真空炉内の温度を測定および制御する方法を学びます。
真空漏れを防ぐにはどうすればよいですか?ラボの効率化のための重要なヒント
O リングのメンテナンス、高温ソリューション、ラボ用真空ポンプのケアに関する専門家のヒントを参考に、真空漏れを防ぐ方法を学びましょう。
圧力スイッチと真空スイッチの違いは?重要な洞察を解説
圧力スイッチと真空スイッチの主な違い、用途、システムに適したスイッチの選び方をご紹介します。
電子ビーム蒸着装置の仕組みとは?薄膜蒸着の精度を高める
電子ビーム蒸着装置の仕組み、主要部品、利点、半導体、光学、ナノテクノロジーなどの産業におけるアプリケーションをご覧ください。
油圧ポンプのよくある問題は何ですか?主要な問題と解決策の説明
コンタミネーション、キャビテーション、オーバーヒートなど、最も一般的な油圧ポンプの問題を発見し、それらを効果的に防止する方法を学びます。
油圧アクチュエータは通常何Psiで作動するのか?最適性能のための重要な洞察
油圧アクチュエータの一般的なPSI範囲(1,000~5,000 PSI)をご覧いただき、お客様の用途に適したアクチュエータの選び方をご確認ください。
油圧シリンダの定格Psiとは?油圧システムの安全性と効率の確保
油圧シリンダーのPSI定格とその重要性、そして油圧システムの安全性と効率をどのように確保するかについて学ぶ。
真空パックは通常のパックとどう違うのですか?主な違いの説明
保存期間、保護、各方法の用途など、真空包装と通常の包装の主な違いを学びます。
フィルタープレスとは?用途に合わせた精密ろ過を実現
1ミクロンから100ミクロン以上のフィルタープレスのミクロンサイズが、研究室や工業プロセスのろ過効率にどのような影響を与えるかをご覧ください。
フィルターにかかる許容圧力損失とは?ろ過効率と寿命の最適化
フィルター内の許容可能な圧力降下、主要な影響要因、およびファイバーおよび金属ワイヤーを巻いたフィルターの圧力降下を計算する式について学びます。
遠心ろ過の欠点とは?主な欠点の説明
高コスト、材料損傷、拡張性の限界、特殊な装置の必要性など、遠心ろ過の主な欠点を探る。
遠心分離機のデメリットは何ですか?考慮すべき主な課題
遠心分離機の欠点である、高コスト、フィードのばらつきに対する敏感さ、メンテナンスの難しさ、マテリアルハンドリングの限界などを探る。
真空と温度の関係は何ですか?真空炉のパフォーマンスを最適化する
真空炉における真空と温度の相互作用について学び、工業用途における熱伝達、均一性、プロセス成果を向上させます。
フィルタープレスは清澄機より優れているか?ニーズに合ったシステムを選ぶ
フィルタープレスとクラリファイアーの主な違いを見つけて、アプリケーションでの液体と固体の分離に最適なソリューションを決定してください。
Lpcvd の欠点は何ですか?半導体製造における主な課題
高温条件、有害物質、不均一な膜除去など、半導体製造に影響を与えるLPCVDの主な欠点を探る。
Lpcvdの長所と短所とは?| Lpcvdの利点と欠点は?
膜品質、多用途性、費用対効果、温度制限など、薄膜堆積における LPCVD の長所と短所を調べてください。
有害な化学蒸気の吸入を避けるために役立つ安全装備は、次のうちどれ?正しい装備で健康を守る
研究室や産業における有害な化学物質の蒸気の吸入を防ぐための呼吸器、換気フード、ガスマスクなどの重要な安全装置をご覧ください。
炉に掃除機をかけてもいいですか?適切なメンテナンスで損傷を防ぐ
炉の真空引きが推奨されない理由と、真空炉を安全かつ効果的にメンテナンスするためのベストプラクティスをご紹介します。
油圧システムにおける熱の悪影響とは?過熱からシステムを守る
過度な熱が油圧システムにどのような影響を与えるか、効率の低下、部品の摩耗、安全上のリスクなどについて説明します。オーバーヒートを防止するためのソリューションをご覧ください。
ベルトフィルタープレスの利点とは?廃水処理の効率と持続可能性を高める
廃水処理における高効率、費用対効果、多用途性、環境コンプライアンスなど、ベルト フィルター プレスの主な利点を発見してください。
Lpcvdの利点と欠点とは?半導体製造における重要な洞察
LPCVDの長所と短所について、膜の均一性の向上、高純度、高コストやプロセスパラメーターに対する感度などの課題を探る。
炉の真空スイッチとは?高温プロセスにおける精度と安全性の確保
炉における真空スイッチの役割、真空レベルを維持するための重要性、材料の品質と安全性への影響をご覧ください。
真空アーク脱ガス処理とは?精密かつ高品質に鋼を精錬する
品質と性能を向上させるために溶鋼からガスと不純物を除去するプロセスである真空アーク脱ガス (VAD) について学びます。
作動油を冷やすには?システム性能を最適化するための重要なヒント
作動油を冷却し、オーバーヒートを防ぎ、油圧システムの寿命を延ばすための効果的な方法を学びます。
油圧ポンプの故障の主な原因は何ですか?専門家のヒントで高額な故障を防ぐ
コンタミネーション、オーバーヒート、ミスアライメントなど、油圧ポンプの故障の主な原因と、それらを効果的に防止する方法を学びます。
油圧システムによくある故障とは?専門家の洞察でダウンタイムを回避
最適な性能と信頼性を確保するために、最も一般的な油圧システムの欠陥、その原因、影響、予防のヒントをご覧ください。
油圧システムに必要なメンテナンスとは?長寿命と効率の確保
最適なパフォーマンスを実現するためのオイルの品質、清浄度、漏れチェック、コンポーネントの検査など、油圧システムのメンテナンスに関する重要なヒントを学びます。
油圧システムのメンテナンス要件とは?寿命と効率の確保
流体のチェック、コンポーネントの検査、性能を向上させるための予防的なスケジュール設定など、油圧システムの重要なメンテナンス手順を学びます。
なぜ油圧システムは常に低圧で始動しなければならないのか?寿命と安全性の確保
油圧システムを低圧で始動することが、損傷を最小限に抑え、サージを防止し、スムーズな作動を確保するために極めて重要である理由をご覧ください。
フィルタープレスの性能を向上させるには?専門家のアドバイスで効率と寿命を高める
適切なスラリーの前処理、メンテナンス、最適な圧力設定により、ラボ用フィルタープレスの性能を向上させる方法をご覧ください。
ろ過の産業用途とは?産業界における重要な役割を知る
食品製造、製薬、石油化学などの産業において、ろ過がどのように品質、安全性、効率性を確保しているかをご覧ください。
真空は温度にどのような影響を与えるのでしょうか?材料の完全性と効率性に関する主な利点
焼結やアニーリングなどの高温プロセスにおいて、真空がどのように温度制御を強化し、酸化を防止し、材料の純度を確保するかをご覧ください。
真空炉のリーク率とは?最適な性能と清浄度の確保
真空炉におけるリーク率の重要性、リーク率の測定方法、熱処理プロセスにおいて 5 ミクロン/時間未満を維持することが重要である理由を学びましょう。
液体の圧力は容器の大きさや形状に依存するか?誤り-その理由はこうだ
液体の圧力は、容器の大きさや形状ではなく、深さ、密度、重力によって決まります。静水圧の背後にある科学を学びましょう。
油圧が高すぎるとどうなりますか?システムのリスクと解決策
コンポーネントの損傷、安全上の問題、効率の低下など、高圧の危険性とその防止方法について学びます。
油圧システムの故障にはどのようなものがありますか?ダウンタイムを回避し、信頼性を向上
作動油のコンタミネーション、オーバーヒート、漏れなど、油圧システムによくある不具合と、それを防止して性能を向上させる方法を紹介します。
圧縮空気システムの用途は何ですか?多用途の産業用途を探る
製造、自動車、ヘルスケアなどの業界にわたる圧縮空気システムの幅広い用途をご覧ください。
油圧が低すぎるとどうなるか?コストのかかるダウンタイムと安全上のリスクを避ける
接着力の低下、効率の低下、安全上のリスクなど、低油圧による影響を発見します。これらの問題を防ぐ方法を学びましょう。
フィルタープレスの仕組み効率的な固液分離の説明
フィルタープレスがどのように加圧ろ過によって液体から固体を分離するのか、その構成要素や様々な産業における主な用途についてご紹介します。
フィルタープレスの流量はどれくらいですか?今すぐ濾過プロセスを最適化しましょう
フィルタープレスの流量、流量に影響を与える要因、研究室や産業環境での効率的なろ過のための性能の最適化方法について学びます。
作動油に対する圧力の影響とは?システム性能と効率の最適化
圧力が作動油の粘度、圧縮性、および最適なシステム性能のための動力伝達にどのような影響を与えるかを学びます。
許容される漏れ検出方法は何ですか?実証済みの技術でシステムの整合性を確保
システムのパフォーマンスを維持するために、目視検査、圧力テスト、ヘリウム検出、超音波センサーなどの効果的な漏れ検出方法を検討します。
炉の空気圧スイッチは何をするものですか?暖房システムを危険から守る
炉の空気圧スイッチが空気の流れを監視し、一酸化炭素の漏れ、火災、爆発を防止することで安全な運転を確保する方法を学びましょう。
油圧システムの予防保守とは何ですか?効率と寿命を向上
効率性、信頼性、寿命の延長を確実にするために、油圧システムの主な予防保全方法を学びます。
カビの予防保全とは?効率を高め、カビの寿命を延ばす
重要なコンポーネント、利点、プログラムを成功させるための手順など、金型の予防メンテナンスの重要性を理解します。
油圧モータの速度に影響を与えるものとは?キーインサイトでパフォーマンスを最適化
流量、変位、圧力、効率が油圧モータ速度にどのように影響するかを学びます。用途に合わせて性能を最適化します。
油圧機械の性能にどう影響するか?効率と品質の向上
C フレーム プレスやホット プレスなどの油圧機械の設計と加熱機能がどのように性能と産業用途を向上させるかをご覧ください。
真空焼鈍炉のコストはいくらですか?価格設定に影響を与える要因の説明
設計、サイズ、自動化、製造品質など、真空アニール炉のコストに影響を与える主な要因を確認します。
油圧システムの効率は何に依存するのか?主な要因の説明
コンポーネントの品質、作動油の種類、メンテナンス、運転条件など、油圧システムの効率に影響を与える要因を発見してください。
2 つのピストンを備えた油圧プレスはどのように機能しますか?パスカルの原理で力を増幅する
パスカルの原理を利用して力を増幅し、材料の成形、鍛造、圧縮などの作業を効率的に行う油圧プレスについてご紹介します。
プレート&フレームフィルタープレスの構成部品とは?最適なろ過のための主要部品の説明
プレート&フレームフィルタープレスの4つの主要コンポーネント、フレーム、フィルタープレート、マニホールド、フィルタークロスをご覧ください。これらがどのように効率的な固液分離を実現するのかをご覧ください。
プラズマ物質の密度とは?その多様性と重要性を探る
プラズマ物質の密度、その測定法、宇宙物理学、核融合エネルギー、産業応用におけるその重要性を発見する。
真空炉内の漏れをどのようにテストしますか?最適なパフォーマンスを実現するための重要な手順
安全性と効率を確保するために、リーク検出器、ヘリウムガステスト、真空レベル監視を使用して真空炉のリークをテストする方法を学びます。
圧力と温度が作動油に及ぼす影響とは?システム性能の最適化
圧力と温度が作動油の粘度、圧縮性、安定性にどのような影響を与えるかを学び、システムの効率と寿命を確保します。
油圧システムに漏れが発生するとどうなりますか?高額な損害と安全上のリスクを回避
油圧システムの漏れが効率、安全性、コストにどのような影響を与えるかを学び、最適な性能を維持するための予防のヒントを見つけましょう。
油圧システムで最も重要なメンテナンス作業は何ですか?適切な液体ケアによりシステムの信頼性を確保
なぜ作動油のメンテナンスがシステムの性能、効率、寿命にとって重要なのかを学びましょう。故障を防ぐための主なメンテナンスのヒントをご覧ください。
油圧システムの故障原因の第1位は?それを防ぐ方法を学ぶ
汚染が油圧システムの故障の主な原因である理由と、適切なメンテナンスと濾過によって汚染を防ぐ方法を説明します。
作動油を交換しないとどうなりますか?コストのかかるシステム障害を回避する
作動油の交換を怠ると、摩耗の増加、効率の低下、オーバーヒート、システムの故障といったリスクが生じます。システムの性能を維持しましょう。
油圧作動油はなぜ環境に悪いのですか?リスク、影響、および解決策
作動油が毒性、残留性、流出、不適切な廃棄によって環境に悪影響を与える理由を学びましょう。環境への影響を軽減するための環境に優しいソリューションを見つけてください。
標準的な油圧システムの作動温度は?最高の性能と寿命の確保
油圧システムの最適動作温度範囲(30℃~60℃)と、効率と安全のための維持方法を学びます。
油圧機器が熱くなる原因は?オーバーヒートの主な理由と解決策
過剰な負荷、不十分な冷却、流体の汚染など、油圧システムの過熱の一般的な原因を発見し、それを防ぐ方法を学びます。
カーボンナノチューブの環境用途とは?持続可能性に革命を起こす
カーボンナノチューブが、汚染防止、水質浄化、エネルギー貯蔵、センシングなどの環境問題にどのように取り組み、より環境に優しい未来を実現するのかを探る。
Ftir分析用のKbrペレットはどのように調製するのですか?正確な結果を得るためのステップバイステップガイド
FTIR分析用のKBrペレットを、正確な混合、加圧、水分コントロールによって調製し、信頼性の高いスペクトル結果を得る方法をご紹介します。
Cvd には真空が必要ですか?化学蒸着における圧力条件の調査
LPCVDやAPCVDを含むCVDプロセスに真空が不可欠かどうか、また圧力がフィルムの品質や用途にどのような影響を与えるかについてご紹介します。
油圧システムを損傷する最も一般的な原因とは?汚染を防ぎ、システムの寿命を延ばす
油圧システムの損傷の主な原因であるコンタミネーションを発見し、適切なメンテナンス、ろ過、高品質の作動油でそれを防ぐ方法を学びます。
マッフルの目的とは?正確で制御された加熱を実現する
炉におけるマッフルの役割:均一な加熱の確保、材料の保護、工業用および科学用アプリケーションの効率向上についてご覧ください。
急冷中に考慮する必要がある安全上の注意事項は何ですか?安全かつ効率的な金属処理の確保
PPE、換気、急冷媒体の選択、緊急時の手順など、急冷に関する重要な安全上の注意事項を学びます。