あなたの研究室に高品質の機器と材料を提供する、信頼できる世界規模のサプライヤー!
について
ブログ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
製品
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
会社
私たちについて
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
サービスサポート
お問い合わせ
メニュー
メニューを閉じる
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
ブログ
について
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
よくある質問 -
バッテリーラボ用途向け白金シート電極
白金シート電極の利用可能な仕様は何ですか?電気化学的ニーズに最適なものを見つけましょう
白金シート電極の仕様を探る:分析化学、触媒作用、合成のための形状、サイズ、厚さ、表面処理。
白金ワイヤー電極とロッド電極の標準仕様は何ですか?実験に適したフォームファクターを選択する
Ptワイヤー(0.5x37mm、1x37mm)およびロッド(1x5mm、1x10mm)電極の標準サイズと、表面積、電流密度、用途に基づいて選択する方法を学びましょう。
白金ワイヤー/ロッド電極はどのように設置すべきですか?正確な電気化学測定を確実にするために
白金電極を設置するための重要な手順を学びましょう:確実な接続、適切な浸漬深さ、そして誤差を防ぐために白金を電解液から隔離すること。
白金シート電極の一般的な用途は何ですか?電気化学セルにおける信頼性の高い対電極として
白金シートが標準的な対電極である理由を発見してください。電気化学分析において、不活性で干渉しない電流経路を提供します。
白金板電極を電解液に浸漬する際の最も重要なガイドラインは何ですか?正確な電気化学測定を保証する
実験室での実験において、汚染を防ぎ、信頼性の高い電気化学データを確保するために、白金板電極を浸漬する際の必須ルールを学びましょう。
摩耗または傷のついた白金ディスク電極の表面を修復するにはどうすればよいですか?信頼性の高いデータを実現するための鏡面仕上げの達成
白金電極の表面を修復し、正確で再現性のある電気化学測定を保証するための段階的な機械研磨プロトコルを学びます。
白金ディスク電極の被毒の原因と、その防止策は何ですか?信頼性の高い電気化学データを確保する
硫黄や塩素による白金電極の被毒の原因を学び、性能を維持するための洗浄、取り扱い、保管のベストプラクティスを発見してください。
白金電極は何に使われますか?科学、医療、産業における重要な用途
白金電極の独自の不活性性と触媒活性により、生体医療インプラント、電気化学分析、産業触媒における主要な用途を発見してください。
白金線/棒電極の性能特性は何ですか?研究室に比類なき安定性を提供します
白金電極の主要な性能特性、すなわち化学的不活性性、高い導電性、信頼性の高い電気化学的結果を得るための触媒活性について探ります。
白金ディスク電極に必要な定期的なメンテナンスとは何ですか?常に正確な電気化学データを保証するために
信頼性が高く再現性のある電気化学的結果を得るために、完璧な白金電極表面を維持するための必須の洗浄、研磨、保管の手順を学びましょう。
白金ディスク電極の正しい後処理手順とは?正確な結果を得るために電極を保護しましょう
白金ディスク電極の表面の完全性を維持し、再現性のある電気化学データを得るための、洗浄、乾燥、保管の重要な手順を学びましょう。
白金シートの主要な性能特性と用途は何ですか?要求の厳しい用途に対する比類のない信頼性
白金シートの化学的不活性、高温安定性、および触媒特性を、ラボ、化学、電気化学用途向けに探ります。
なぜ白金は不活性なのですか?その驚異的な安定性の背後にある原子の秘密
白金の巨大な原子核と相対論的効果が、いかにして独特で安定した電子配置を生み出し、化学反応に対する高い耐性を実現しているかを発見してください。
板金の利点、欠点、および用途は何ですか?材料選定の究極ガイド
板金の長所、短所、および用途を探ります。その強度対重量比、成形性、費用対効果、および製造上の限界について学びます。
金属の2つの欠点とは?腐食と重量制限の理解
金属の2つの主な欠点である腐食と高密度について学びましょう。プロジェクトにおけるエンジニアリングと材料選択への影響を探ります。
金属を使用する際の欠点は何ですか?腐食、重量、コストの課題を理解する
腐食、高密度、コスト、導電性の問題など、金属を使用する際の主な欠点を探り、プロジェクトのために十分な情報に基づいた材料選択を行いましょう。
はんだ付けはどのような場所で一般的に使用されていますか?日常の電子機器から産業用途まで
プリント基板(PCB)のアセンブリ、配管、ジュエリー、アートにおけるはんだ付けの主な用途を発見してください。信頼性の高い電気接続のために不可欠である理由を学びましょう。
はんだ付けの5つの用途とは?エレクトロニクスからアートまで、材料接合をマスターする
はんだ付けの主要な5つの用途を探る:PCB組立、配管、宝飾品製造、ステンドグラス、自動車修理。それぞれの用途で技術がどのように応用されているかを学ぶ。
金プレート電極を使用した後の後処理手順は何ですか?長期的な精度と性能を確保するために
実験後の感度を維持し、寿命を延ばすために、金電極の洗浄、乾燥、保管に関する必須の4ステッププロトコルを学びましょう。
二酸化鉛-チタン酸素発生電極の仕様は何ですか?高出力酸化を解き放つ
PbO₂-Tiアノードの主要な仕様を探る:チタンメッシュ基板、PbO₂コーティング、高いOEP、そして要求の厳しい電気化学プロセス向けの使用限界。
電極の研磨セットアップはどのように準備しますか?信頼性の高い電気化学測定のために完璧な鏡面仕上げを実現する方法
電極研磨のセットアップと技術に関するステップバイステップガイド。正確な電気化学データを保証するために、アルミナ研磨材を用いた段階的な研磨、適切な動かし方、洗浄について学びます。
電気分解セルにはどのような種類の電極が使用されますか?あなたの研究室に最適なシステムを選択しましょう
陽極、陰極、作用極、対極、参照極を含む、電気分解セルにおける二電極系と三電極系の違いを学びましょう。
ルテニウム・イリジウム・チタン塩素発生電極の特長とは?高効率・高純度塩素生産を実現
Ru-Ir-Ti電極の主な特長である低消費電力、寸法安定性、長寿命、および塩素発生における高純度製品の出力を発見してください。
ルテニウム-イリジウム-チタン塩素発生電極の仕様は何ですか?塩素生産を最適化しましょう
Ru-Ir-Tiアノードの主要な仕様(塩素発生電位、電流密度、コーティングの詳細)を学び、効率的で耐久性のある電解を実現しましょう。
実験に使用される金および白金シートの純度はどのくらいですか?信頼性の高い結果を得るための99.99%の純度保証
なぜ99.99%純度の金および白金シートが、化学的不活性、安定した性能、および再現性のある実験結果に不可欠なのかを学びましょう。
スパッタリングにおけるアノードとは?薄膜成膜のための安定したプラズマの鍵
スパッタリングシステムにおけるアノードの重要な役割を学びましょう。アノードは電子を収集し、プラズマの安定性を維持し、連続的な薄膜成膜を保証します。
イリジウム・タンタル・チタン酸素発生電極の応用分野は何ですか?要求の厳しいプロセス向け高性能アノード
IrO₂-Ta₂O₅コーティングされたチタンアノードの主要な用途、すなわち電気冶金、廃水処理、電気合成における優れた効率と耐久性をご覧ください。
最も正確な温度センサーはどれですか?Rtdが精度と安定性で優位に立つ理由
RTDが産業用および科学用途で最も正確な温度センサーである理由をご覧ください。±0.1°Cの精度、優れた直線性、長期安定性を提供します。
なぜAg/Agclは参照電極として使用されるのですか?電気化学測定における比類ない安定性と信頼性のため
Ag/AgCl電極が電気化学分析の業界標準である理由をご覧ください。安定した電位、再現性、安全性を備えています。
ダイヤモンドの鑑別とは?天然ダイヤモンドとラボグロウンダイヤモンドを見分ける究極のガイド
宝石鑑定士がどのようにダイヤモンドを鑑別し、天然石とラボグロウンダイヤモンドを区別するのか、そしてなぜ正確な検証に高度なラボ分析が不可欠なのかを学びましょう。
貴金属の純度はどのようにテストしますか?酸性試験からラボ分析まで
簡単な酸性試験から決定的な火試金法まで、金、銀、プラチナの純度をテストするための最良の方法を学びましょう。精度とコストに応じて適切な方法を選択してください。
ガラス状炭素シートを研磨する際の推奨される前処理手順は何ですか?鏡面のような、汚染のない表面を実現するには
ガラス状炭素の3段階前処理(洗浄、アルミナ研磨剤による機械研磨、活性化)を学び、信頼性の高い実験結果を得ましょう。
真空管の主な問題点とは?非効率性、熱、そして脆さについて解説
真空管がなぜ非効率で、脆く、過剰な熱を発生させ、高い消費電力と限られた寿命につながるのかを解き明かします。
電子ビームの発生源は何ですか?アプリケーションに合ったエミッターの選択
タングステンフィラメントから電界放出エミッターまで、陰極がどのように電子ビームを生成し、研究室の装置性能に影響を与えるかを学びましょう。
マグネトロンスパッタリングカソードとは何ですか?高品質薄膜堆積のためのエンジン
マグネトロンスパッタリングカソードがどのように磁場を利用して高密度プラズマを生成し、様々な基板上に効率的かつ高速に薄膜コーティングを行うかを学びましょう。
厚膜Pcbと薄膜Pcbの違いとは?適切な回路技術の選択
厚膜PCBと薄膜PCBの主な違いを、製造プロセスから性能、コスト、理想的な用途まで探ります。
Xrfにはどのくらいのサンプルが必要ですか?正確な結果を得るためには量ではなく品質に焦点を当てる
XRFサンプル調製の品質(厚さ、平坦度、均質性)が質量よりも重要である理由を学びましょう。金属、粉末、融解ビーズに適切な方法を選択してください。
製薬業界でバッチリアクターが使用されるのはなぜですか?医薬品製造における比類ない柔軟性と制御
多段階の医薬品合成における柔軟性、トレーサビリティ、精密な制御のために、なぜバッチリアクターが製薬業界で標準的な選択肢となっているのかをご覧ください。
石英は耐性のある鉱物ですか?石英の2つの形態とその独自の強みを発見する
石英の耐性を探る:天然の結晶性石英は物理的な硬さに優れ、溶融石英は優れた熱的・化学的安定性を提供します。
ボルタ電池と電解槽の違いは何ですか?電気化学の原理をマスターする
ボルタ電池と電解槽の主な違い(自発性、エネルギーの流れ、発電と化学合成における応用)を学びましょう。
ガルバニ電池と電気分解セルの主な違いは何ですか?エネルギー変換に関する明確なガイド
主な違いを理解しましょう。ガルバニ電池は自発的に電力を生成し、電気分解セルは反応を駆動するために電力を利用します。