あなたの研究室に高品質の機器と材料を提供する、信頼できる世界規模のサプライヤー!
について
ブログ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
製品
サンプルの準備
静水圧プレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
ガラス素材
バイオ化学装置
ロータリーエバポレーター
ガラスリアクター
高圧反応器
短経路蒸留
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
知識
会社
私たちについて
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
サービスサポート
お問い合わせ
メニュー
メニューを閉じる
サンプルの準備
静水圧プレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
ガラス素材
バイオ化学装置
ロータリーエバポレーター
ガラスリアクター
高圧反応器
短経路蒸留
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
知識
ブログ
について
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
よくある質問 -
10L ショートパス蒸留
ショートパス蒸留キットとは?熱に弱い物質を穏やかに分離するための必須ツール
ショートパス蒸留キットが、医薬品、食品、化粧品、ファインケミカルなどの熱に敏感な材料にどのように高純度分離を提供するかをご覧ください。
ショートパス蒸留とは?熱に弱い物質を効率よく精製するためのガイド
ショートパス蒸留が、医薬品、食品、化粧品などの産業において、高沸点物質や熱に敏感な物質を効率的に分離・精製する方法をご覧ください。
ショートパス蒸留とは?熱に弱い物質を効率よく分離するためのガイド
ショートパス蒸留が、高沸点で熱に弱い物質を、熱劣化を最小限に抑えるために減圧で分離・精製する方法をご紹介します。
ショートパス蒸留の最適温度範囲は?高純度分離を安全に行うために
効率的で高純度な分離を確実にするために、加熱マントルやコンデンサーの設定など、ショートパス蒸留の理想的な温度範囲を学びます。
ショートパス蒸留とは?効率的な感熱材料精製の手引き
ショートパス蒸留の仕組み、利点、用途、減圧下で熱に敏感な物質を精製するための重要なステップをご紹介します。
ショートパス蒸留とは?効率的な化合物分離の手引き
ショートパス蒸留が、熱に敏感な材料や実験室での用途に理想的な、減圧下で化合物を分離・精製する方法をご紹介します。
ショートパス蒸留とは?熱に弱い化合物を正確に精製する
ショートパス蒸留が高真空下で熱に敏感な化合物を効率的に精製し、高純度と最小限の劣化を保証する方法をご覧ください。
ショートパス蒸留とは?効率的な化合物分離の手引き
医薬品やエッセンシャルオイルなどに理想的な、熱に弱い化合物を減圧下で効率的に分離するショートパス蒸留をご覧ください。
真空圧はどのようにショートパス蒸留を強化するのか?熱に弱い化合物の分離を最適化する
ショートパス蒸留における真空圧がどのように沸点を下げ、熱劣化を最小限に抑え、熱に敏感な材料の高純度蒸留物を保証するかをご覧ください。
ショートパス蒸留とは?熱に弱い物質を効率よく分離するためのガイド
エッセンシャルオイルやカンナビノイドのような熱に弱い物質の精製に理想的な、複雑な混合物を効率的に分離するショートパス蒸留の方法をご覧ください。
ショートパス蒸留の温度範囲は?安全で効率的な分離のために
安全で効率的な化合物の分離を確実にするために、加熱マントル、凝縮器、蒸発器の設定など、ショートパス蒸留の最適な温度範囲を学びます。
ショートパス蒸留とは?熱に弱い化合物の効率的精製ガイド
ショートパス蒸留の仕組み、その利点、製薬、食品、石油産業におけるアプリケーションをご覧ください。
ショートパス蒸留の所要時間は?20時間で効率よく精製
ショートパス蒸留は3Lの粗抽出液に20時間程度かかります。その仕組み、利点、高純度産業での応用についてご紹介します。
ショートパス蒸留とは?熱に弱い物質を精製する重要な技術
食品、医薬品、化粧品などの産業において、ショートパス蒸留がどのように高沸点で熱に弱い材料を精製しているかをご覧ください。
ショートパス蒸留とは?複雑な混合物を効率よく分離するためのガイド
ショートパス蒸留の仕組み、利点、熱に敏感な物質や高沸点物質の分離への応用について学びます。
ショートパス蒸留とは?高純度化合物分離の手引き
ショートパス蒸留の仕組み、重要なステップ、そして大麻やエッセンシャルオイル製造などの産業における応用について学ぶ。
ショートパス蒸留とは?最小限の装置で高純度蒸留を実現
熱に敏感な化合物を保存し、高純度の蒸留物を達成するために、ショートパス蒸留がどのように超低圧(0.001mbarまで)で作動するかをご覧ください。
ショートパス蒸留とは?穏やかで効率的な精製技術
ショートパス蒸留の仕組み、熱に弱い化合物への利点、医薬品や食品などへの応用についてご紹介します。
ショートパス蒸留とは?大麻と麻の高純度オイル精製を実現する
大麻やヘンプのようなオイルを短時間蒸留法で精製し、THC、CBD、テルペン類を分離して、純粋で用途の広い最終製品にする方法を学ぶ。
ショートパス蒸留とは?熱に弱い物質を精製する重要な技術
ショートパス蒸留が、医薬品や食品加工などの産業において、高沸点で熱に弱い物質をどのように分離・精製しているかをご覧ください。
ショートパス蒸留とは?医薬品と化粧品の高純度ソリューションを解き放つ
ショートパス蒸留が、CBDやビタミンEのような熱に弱い化合物を、正確かつ効率的に、劣化を最小限に抑えながら精製する方法をご覧ください。
ショートパス蒸留とは?熱に弱い化合物の精製に最適
ショートパス蒸留により、熱に弱い化合物を低温、高純度、最小限の劣化で保存する方法をご覧ください。
ショートパス薄膜蒸留とは?熱に弱い化合物の効率的な分離
ショートパス薄膜蒸留の仕組み、利点、熱に敏感な化合物や高沸点化合物の分離への応用をご覧ください。
ショートパス蒸留の欠点とは?主な課題と限界の説明
ロータリーエバポレーターのような代替品と比較して、高いコスト、材料ロス、スケーラビリティの問題など、ショートパス蒸留の主な欠点をご覧ください。
ショートパス蒸留とは?敏感な物質に優しい分離方法
ショートパス蒸留が、高沸点、熱に弱い、酸化しやすい物質を、熱劣化を最小限に抑えながら効率的に分離する方法をご覧ください。
ショートパス蒸留とは?熱に弱い化合物を効率よく分離するためのガイド
ショートパス蒸留の仕組み、成分、エッセンシャルオイルやカンナビノイドのような熱に弱い化合物の精製への応用について学ぶ。
ショートパス蒸留の欠点は?主な課題と限界
高いコスト、技術的な複雑さ、拡張性の問題など、ショートパス蒸留の欠点を探り、その実用性と市場成長に影響を与える。
単式蒸留と短路蒸留の違いとは?優れた精製技術の発見
ショートパス蒸留が、温度制御、安全性、効率性、敏感な化合物に対する材料適合性において、いかに単純蒸留を凌ぐかをご覧ください。
カンナビノイドのショートパス蒸留とは?高純度のCbdとThc単離物の実現
ショートパス蒸留がどのように熱に弱いカンナビノイドを保存し、医療用および娯楽用の高純度のCBDとTHC単離物を確保するかをご覧ください。
ショートパス蒸留と常圧蒸留の違いとは?効率的な分離のための重要な洞察
効率、純度、熱に弱い化合物への応用など、ショートパスと通常の蒸留の違いをご覧ください。
ショートパス蒸留における沸点差とは?効率的な分離のための重要な洞察
ショートパス蒸留における沸点の違いが、熱に弱い化合物や高沸点化合物の効率的な分離を可能にすることを学ぶ。
ショートパスと分子蒸留の違いは?精密分離のための重要な洞察
ショートパス蒸留と分子蒸留の主な違いについて、操作圧力、用途、熱に敏感な物質の使用例などをご紹介します。
カンナビノイドの短気蒸留に最適な温度範囲は?
カンナビノイドの蒸留に理想的な温度範囲(130~180℃)、機器の制限、高品質の結果を得るための安全上のヒントについて学びます。
ショートパス蒸留と単蒸留:どちらが適しているか?
効率性、安全性、費用対効果など、ショートパス蒸留と単蒸留の主な違いをご覧ください。
蒸留に必要な真空レベルは?適切なポンプでプロセスを最適化
効率的な沸点降下とプロセスの信頼性を確保するために、蒸留に適した真空レベルとポンプを選択する方法をご紹介します。
ショートパス蒸留と分別蒸留の違いとは?重要な洞察を解説
操作原理、装置、用途など、短経路蒸留と分別蒸留の主な違いをご覧ください。
蒸留における真空ポンプの役割とは?効率を高め、品質を保つ
真空ポンプがどのように沸点を下げ、酸化を防ぎ、熱に敏感な物質の高純度蒸留を保証するかをご覧ください。
低温蒸発技術とは?熱に敏感なプロセスの品質と効率を保つ
低温蒸発が熱に弱い素材の味、香り、栄養素をどのように保存するかをご覧ください。その利点と応用例をご覧ください。
サーマルエバポレーターの真空度とは?高品質な薄膜成膜のために
高真空レベル(10^-5~10^-7Torr)が、薄膜の純度、密着性、サーマルエバポレーターの性能にとって極めて重要である理由をご覧ください。
圧力は減圧蒸留にどのような影響を与えますか?より良い結果を得るためのプロセスの最適化
真空圧が蒸留効率にどのような影響を与え、沸点を下げ、熱に弱い化合物の分離を促進するかをご覧ください。
減圧蒸留に最適なポンプを選ぶには?最適性能のための主な要因
化学的適合性、真空圧、流量などの要素を評価し、蒸留に適した真空ポンプを選択する方法をご紹介します。
蒸留の重要なステップとは?効率的な分離のためのプロセスをマスターしよう
蒸留に不可欠な5つのステップ(準備、加熱、気化、凝縮、回収)を学びます。高収率と高純度のためにプロセスを最適化する。
低温真空とは?- 6つの利点
減圧蒸留とは?熱に弱い液体をやさしく分離するガイド
減圧蒸留の仕組み、熱に弱い物質に対する利点、効率的な分離に使用される圧力範囲についてご紹介します。
単純蒸留をより効果的にするには?純度と効率を高める
装置の最適化、温度管理、エネルギー消費の削減など、単式蒸留を強化する実証済みの戦略を学ぶ。
蒸留におけるコンデンサーの役割とは?効率的な気液変換に不可欠
蒸気を冷却して液体に変換し、蒸留プロセスにおける効率的な分離、回収、環境安全を可能にするコンデンサーの仕組みについてご紹介します。
低温真空とは何ですか?その用途と利点を探る
低温真空とは何か、その主要な用途、そしてそれが材料科学、エレクトロニクス、量子コンピューティングなどの業界にどのようなメリットをもたらすのかを学びましょう。
熱分解油の蒸留プロセスは何ですか?効率的な分離のためのステップバイステップガイド
加熱、気化、凝縮、汚染防止、ディーゼル、アスファルトなどの製造に至るまで、熱分解油蒸留の仕組みについてご紹介します。
Thc蒸留液の蒸発温度は?最適な使用のための重要な洞察
THC蒸留液の蒸発温度(157℃)と、圧力、純度、テルペンなどの要素がその性能にどのように影響するかを学ぶ。
拡散ポンプの真空度とは?精密アプリケーションのための超高真空を実現する
拡散ポンプがどのようにして10^-3から10^-9 Torrの真空レベルを達成するのか、その動作原理、高真空産業における主な用途についてご紹介します。
蒸着機とは何ですか?精密成膜と溶液濃度の説明
半導体、有機合成、環境研究に不可欠な薄膜や濃縮溶液を蒸着装置がどのように蒸着するのかをご覧ください。
Thc蒸留液製造に最適な温度範囲は?
THC蒸留液の理想的な蒸留温度範囲(130~180℃)と、より高い純度を実現する先進的なシステムについてご紹介します。
単蒸留とは?沸点の異なる液体を分離するためのステップバイステップガイド
分子拡散、蒸発、蒸気移動、凝縮など、効果的な液体分離のための単蒸留の4つの重要なステップを学ぶ。
どのような場合に単蒸留を使用するか?理想的な用途と主な考慮点
水の精製、溶媒の分離、エッセンシャルオイルの抽出など、沸点の差が大きい混合物に対して、どのような場合に単蒸留を使用するかを学びます。
最も効率的な分離技術とは?用途に最適な方法を見つける
蒸留、クロマトグラフィー、ろ過など、お客様のニーズに合わせた最も効率的な分離技術をご紹介します。
拡散ポンプの長所と短所は何ですか?高真空ソリューションのガイド
高真空能力、可動部品がないこと、メンテナンスの考慮事項など、拡散ポンプの長所と短所を調べてください。
拡散ポンプは何度の温度で動作しますか?高真空アプリケーションに関する重要な洞察
200°C ~ 300°C の範囲の拡散ポンプの動作温度と、高真空用途における拡散ポンプの役割について学びます。
プラスチック廃棄物熱分解プラントの価格は?あなたのニーズに最適な価格を見つける
30,500ドルから始められるプラスチック廃棄物熱分解プラントのコストを発見し、規模、カスタマイズ、効率などの要因が価格にどのように影響するかを学ぶ。
熱分解油をディーゼル燃料に変換するには?持続可能な燃料生産へのステップバイステップガイド
熱分解油がどのように水素化処理、蒸留、精製工程を経てディーゼル燃料に変換されるかをご覧ください。この持続可能な燃料ソリューションの利点と課題をご覧ください。
計測機器の真空システムはどのような圧力値で動作しますか?キー範囲の説明
低真空から超高真空までの計測機器における真空システムの圧力範囲と、分析、産業、研究現場でのその応用について学びます。
拡散ポンプの主な用途は何ですか?研究室や産業向けの高真空ソリューションを活用
半導体製造から宇宙シミュレーションまで、実験室、製造、研究における拡散ポンプの重要な用途を探ります。
なぜ真空は蒸発工程で使われるのか?効率、制御、精度の向上
真空蒸発がいかに沸点を下げ、サンプルの完全性を保ち、回転蒸発や薄膜蒸着などのアプリケーションの効率を高めるかをご覧ください。
真空下でのThcの沸点は?効率的な抽出のための重要な洞察
真空状態がTHCの沸点にどのような影響を与えるかを学び、専門家の洞察で抽出プロセスを最適化しましょう。
どのような場合に単蒸留が分留よりも好ましいのか?効率的な分離のための重要な洞察
沸点に大きな差があっても、効率的で費用対効果の高い分離を行うために、どのような場合に単蒸留を使用するかを学びます。
液体と真空では熱伝達はどのように異なりますか?重要な洞察と実際の応用
実際の例を使用して、伝導、対流、輻射など、液体と真空における熱伝達メカニズムの違いを調べます。
拡散ポンプが高真空用途に最適なのはなぜですか?比類のない効率と信頼性
拡散ポンプが可動部品がなく、メンテナンスが少なく、精度の高い性能を備えた高真空用途に優れている理由をご覧ください。
拡散ポンプとは何ですか?高真空および超高真空レベルを簡単に達成
拡散ポンプの仕組み、その主要なコンポーネント、用途、科学および産業用途で高真空および超高真空レベルを達成する際の利点について学びます。
拡散ポンプの主な用途は何ですか?高真空産業に不可欠
科学研究、半導体製造、工業プロセス、航空宇宙試験における拡散ポンプの重要な用途を発見します。
ショートパス蒸留と薄膜蒸留:ニーズに合った分離技術は?
作業原理、効率、用途など、ショートパス蒸留と薄膜蒸留の主な違いを探り、あなたの業界に最適な方法を選びましょう。
Cbdは蒸留できるのか?高純度Cbd製品の秘密を解き明かす
CBD蒸留がどのようにチンキ、エディブル、外用薬の純度、安全性、効能を保証するかを学びましょう。そのプロセスと利点をご覧ください。
凝縮チューブとは何ですか?蒸気から液体への効率的な変換に不可欠
凝縮チューブ、その材料、設計、蒸留、還流システム、溶媒回収における用途について学びます。
液体から固体を除去するにはどの方法が最適か?適切な分離技術を見つける
濾過、遠心分離、沈殿、蒸発、デカンテーションなど、固液分離に最適な方法を、粒子径や密度などに基づいてご紹介します。
真空は蒸気圧にどのように影響しますか?材料加工の精度を解放する
真空によってどのように蒸気圧が低下し、航空宇宙やエレクトロニクスなどの業界で低温での正確な材料加工が可能になるかを学びましょう。
拡散ポンプとは何ですか?高真空用途向けの超低圧を実現
半導体製造、研究室、宇宙シミュレーション向けに、拡散ポンプがどのようにして高真空レベル (10^-2 Pa 以下) を生成するかを学びます。
拡散ポンプの主な特徴は何ですか?高真空効率と耐久性を実現
耐久性、高真空機能、最適なパフォーマンスを実現するための高品質オイルの重要性など、拡散ポンプの重要な機能を学びましょう。
電子ビーム蒸着装置の仕組みとは?薄膜蒸着の精度を高める
電子ビーム蒸着装置の仕組み、主要部品、利点、半導体、光学、ナノテクノロジーなどの産業におけるアプリケーションをご覧ください。
化学気相成長とは何度まで可能か?最適な薄膜製造のための重要な洞察
APCVDやPECVDなどの方法を含む、化学気相成長(CVD)に必要な温度と、それらが薄膜品質に与える影響についてご覧ください。
油拡散ポンプのデメリットは何ですか?主なリスクと課題の説明
安全上のリスク、汚染、メンテナンスの手間、環境への懸念など、油拡散ポンプの欠点を探ります。
拡散ポンプは何に使用されますか?高真空産業における必須のアプリケーション
半導体製造、質量分析、電子顕微鏡など、超高真空のニーズに応える拡散ポンプの重要な用途を探ります。
熱分解油はどのように精製されるのか?バイオオイルを高品質燃料に変える
クリーンで安定した燃料を生産するために、熱分解油が蒸留、脱脂、漂白、改良技術によってどのように精製されるかを学ぶ。
宇宙の真空中を伝わる熱伝達はどれですか?放射熱伝達を発見する
真空中での放射熱伝達のしくみと、宇宙やマッフル炉などの産業用途における放射熱伝達の重要な役割について学びます。
拡散ポンプの最大圧力はどれくらいですか?最適なパフォーマンスと寿命を確保
入口圧力と排気圧力を含む拡散ポンプの最大圧力制限と、損傷や非効率を回避する方法について学びます。
システムに圧力や真空を加える際にはどのような注意が必要ですか?安全性と効率性の確保
最適なパフォーマンスを実現するための材料の選択、メンテナンス、操作ガイドラインなど、圧力と真空を適用するための重要な注意事項を学びます。
真空蒸着とは?真空蒸着の用途と利点
真空蒸発の仕組み、廃水処理、薄膜蒸着、溶媒除去への応用、主な利点をご覧ください。
ろ過で溶液中の固体と液体を分離できる?ろ過のしくみ
濾過が液体から固体を分離する方法、その種類、用途、効率に影響を与える重要な要素を学びましょう。研究室や産業に最適です。
レトルトは圧力容器?主な違いとコンプライアンスの説明
レトルトが圧力容器として認められる場合、その設計上の考慮点、安全な工業用使用のための規制基準について学ぶ。
拡散真空ポンプとは何ですか?可動部品なしで高真空を実現
拡散真空ポンプの仕組み、その利点、限界、高真空ニーズへの応用について学びます。
拡散ポンプの掃除方法は?最適なパフォーマンスを実現するためのステップバイステップのガイド
ステップバイステップのガイドで、拡散ポンプの洗浄とメンテナンスの方法を学びましょう。寿命、効率、最高のパフォーマンスを保証します。
真空を適用すると化合物の沸点がどのように下がるのでしょうか?蒸発と蒸留を最適化
真空システムがどのように沸点を下げ、熱に弱い化合物のより安全でエネルギー効率の高い蒸発と蒸留を可能にするかを学びましょう。
炉の冷却システムとは?温度制御と効率化に不可欠
炉の冷却システム、その種類、構成部品、最適な材料特性と設備の長寿命化を達成するための重要性について学びます。
検出可能な最小リーク率はどれくらいですか?信頼性の高い漏れ検出のための基本ガイド
検出可能な最小リーク率、業界におけるその重要性、安全性と効率性の検出精度に影響を与える要因について学びます。
テルペンは何度で蒸発するのか?アロマとフレーバーを科学する
テルペンの沸点と、それがエッセンシャルオイル、大麻の気化、食品の風味保存に与える影響を発見する。
産業における真空ポンプの用途は何ですか?主な用途と利点の説明
真空ポンプが半導体製造、薄膜蒸着、熱処理などの業界でどのように精度、効率、品質を向上させるかをご覧ください。
宇宙では熱伝達はどのように行われるのでしょうか?宇宙船設計における放射線の役割
宇宙では放射熱伝達がどのように支配的であるか、また宇宙船の熱管理と設計における放射熱伝達の重要な役割について学びます。
誘導炉にとって冷却システムが重要なのはなぜですか?溶解プロセスの安全性と効率性を確保
冷却システムが誘導炉にとって不可欠であり、溶解プロセス中の安全性、効率性、正確な温度制御を確保する理由を学びましょう。
真空ポンプは他に何に使えますか?業界全体にわたるその多彩な用途を発見してください
製造、研究、エレクトロニクスなどにおける真空ポンプの多様な用途を調べてください。効率とイノベーションをどのように強化するかを学びましょう。
高速熱分解とは?高バイオオイル収率のためのバイオマス変換の最適化
450~550℃の高温で、バイオマスをバイオオイル、バイオチャー、合成ガスに変換する高速熱分解の方法をご紹介します。
フィルタープレスの仕組み効率的な固液分離の説明
フィルタープレスがどのように加圧ろ過によって液体から固体を分離するのか、その構成要素や様々な産業における主な用途についてご紹介します。
食品業界におけるレトルトマシンの用途は何ですか? |主な利点の説明
レトルト機械がどのように食品の安全性を確保し、賞味期限を延ばし、大規模な食品生産の効率を向上させるかをご覧ください。
タイヤ熱分解油の精製プロセスとは?廃棄物を価値ある燃料に変える
タイヤ熱分解油精製が、蒸留、アップグレード、汚染防止を通じて廃タイヤを使用可能な燃料に変換する方法を学ぶ。