あなたの研究室に高品質の機器と材料を提供する、信頼できる世界規模のサプライヤー!
について
ブログ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
製品
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
会社
私たちについて
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
サービスサポート
お問い合わせ
メニュー
メニューを閉じる
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
ブログ
について
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
よくある質問 -
ロータリーチューブファーネス分割マルチ加熱ゾーン回転チューブファーネス
誘導炉とアーク炉の違いは何ですか?適切な溶解技術の選択
誘導炉は精度を高めるために金属を内部から加熱するのに対し、アーク炉は外部のアークで強力な熱を発生させます。どちらがあなたのニーズに最適か学びましょう。
熱処理は必要ですか?適切なエンジニアリング上の選択をするためのガイド
性能や製造のために熱処理が不可欠な場合と、コストと複雑さを削減するために避けることができる場合を学びましょう。
あらゆる金属を焼き戻し(焼きなまし)できますか?いいえ、そのプロセスが特定の鋼に限定される理由を以下に説明します。
焼き戻しが炭素鋼のような硬化された鉄合金にのみ効果がある理由と、それが硬度と靭性のバランスをどのように取るかを学びましょう。
焼入れ後の焼き戻しの目的は何ですか?硬度と靭性の完璧なバランスを実現すること
焼き戻しが硬化鋼の脆性をどのように低減し、靭性と延性を高め、工具や構造部品のための耐久性のあるコンポーネントを作成するかを学びましょう。
焼きなまし(焼戻し)は材料にどのような影響を与えますか?硬度と靭性のバランスをとるための鍵
焼きなましが焼き入れ鋼の脆性をどのように低減し、靭性と延性を高め、用途に応じて材料特性を精密に制御できるようにするかを学びましょう。
熱処理プロセスはどのように選択すればよいですか?金属部品に最適な方法を選択する
材料、必要な特性、部品の形状に基づいて最適な熱処理プロセスを選択し、最高の性能と耐久性を実現する方法を学びましょう。
還元性雰囲気から酸化性雰囲気への変化はどのように行われますか?炉内環境を安全に変換する
酸素または空気を使用して、還元性雰囲気を酸化性雰囲気に安全に変換する方法を学びます。熱衝撃や爆発を防ぐための重要な手順が含まれます。
熱処理の長所と短所とは?材料性能向上ガイド
熱処理の長所と短所を探ります。これには、強度、硬度の向上、コストや複雑さのリスクが含まれます。
熱処理炉の動作原理とは?制御された材料変革へのガイド
熱源、雰囲気制御、温度調節など、熱処理炉が材料特性を変化させる仕組みについて学びましょう。
熱処理時間をどのように計算しますか?材料、厚さ、保持時間のガイド
最適な結果を得るために、材料特性、部品の厚さ、およびプロセス目標に基づいて熱処理時間を正確に計算する方法を学びましょう。
熱処理の長所と短所とは?材料強化におけるトレードオフのガイド
熱処理が材料特性をどのように向上させるか、また歪みや表面変化のリスクなど、熱処理の長所と短所を探ります。
熱処理を使用する目的は何ですか?優れた性能のために材料特性を調整する
熱処理が、エンジニアリングや製造における特定の用途のために、強度、硬度、耐久性などの金属特性をどのように変化させるかを学びましょう。
亜鉛の蒸発とは?溶接における重大な安全と品質の課題
鋼の溶接中に亜鉛が907℃で蒸発し、有毒ヒュームが発生する理由を学びましょう。この危険性を管理するためのリスクと必須の安全手順を発見してください。
焼結炉の種類とは?加熱、処理、雰囲気に関するガイド
抵抗加熱式、誘導加熱式、バッチ式、連続式焼結炉を比較。材料、量、雰囲気のニーズに合ったタイプを見つけましょう。
熱処理の成果とは?優れた性能のために材料特性を調整する
熱処理が硬度、延性、応力除去などの材料特性をどのように向上させ、部品の性能と信頼性を高めるかをご覧ください。
熱処理は何をするのですか?材料の可能性を最大限に引き出す
制御された加熱および冷却プロセスを通じて、熱処理が強度や靭性などの材料特性をどのように変化させるかを学びましょう。
熱処理の要件とは?素材の持つ可能性を最大限に引き出す
航空宇宙、自動車などの過酷な用途向けに、材料の強度、硬度、耐久性を向上させるために熱処理が不可欠となる場合を学びましょう。
石英ガラス管は何に使われますか?高温・高純度用途に不可欠
石英ガラス管が、その独自の熱的・光学的特性により、半導体製造、高温炉、UV用途でどのように活用されているかをご覧ください。
熱処理にはどのくらいの時間がかかりますか?最適な材料特性を得るためには、数分から数日かかります
熱処理時間は、材料、部品のサイズ、および目的の結果によって異なります。保持時間と冷却速度が、数分から数日にわたるサイクル時間にどのように影響するかを学びましょう。
石英は高温で生成されますか?石英の多形現象の秘密を解き明かす
石英がどのように高温(870°Cまで)で形成され、573°Cで重要な転移を起こし、その結晶構造と地質学的意義を形作るかを発見してください。
密閉焼入れ炉の温度は何度ですか?熱処理を最適化するためのガイド
密閉焼入れ炉の温度は800°Cから1000°Cの範囲です。鋼の焼入れ、浸炭、または炭窒化に最適な温度を選択する方法を学びましょう。
焼結プロセスとは?粉末ベース製造のガイド
生形から固体部品までの焼結プロセス段階を学びましょう。固相焼結と液相焼結、トレードオフ、SPSなどの高度な方法を理解します。
誘導炉の別名は何ですか?コアレス炉とチャネル炉タイプの解説
誘導炉が単一の同義語を持つのではなく、設計(コアレスまたはチャネル)によって分類される理由を学びましょう。その動作原理と用途を理解してください。
ボックス炉とは?研究室および産業向けのバッチ式熱処理ガイド
ボックス炉とは何か、その設計、熱処理や焼結などの主要な用途、そしてプロセスに適した炉の選び方について学びましょう。
誘導炉で鉄はどのように生産されますか?クリーンで効率的な溶解技術を活用する
誘導炉が電磁誘導を利用して鉄を内部から溶解し、優れた制御、純度、エネルギー効率を提供する方法をご覧ください。
熱処理用レトルト炉とは?材料の優れた雰囲気制御を実現
レトルト炉がどのようにして精密な熱処理のための密閉チャンバーを提供し、酸化を防ぎ、浸炭や光輝焼鈍のような高度なプロセスを可能にするかをご覧ください。
溶解炉にはどのような種類がありますか?あなたの鋳造所に最適な技術を選びましょう
誘導炉、電気アーク炉、キューポラ炉、るつぼ炉を比較します。材料、量、純度のニーズに基づいて最適な溶解炉を選択する方法を学びましょう。
焼結の3つの段階とは何ですか?微細組織の転換をマスターする
ネック形成、緻密化、気孔除去の3つの物理的段階を学びましょう。これらが粉末を固体部品にどのように転換させるかを理解します。
るつぼ炉の用途は何ですか?純度と柔軟性を重視した少量溶解のマスターを目指しましょう
るつぼ炉が、金やアルミニウムなどの非鉄金属を高純度で溶解する方法を発見してください。研究室、鋳造所、職人に最適です。
誘導加熱の2つの種類とは?チャネル炉とコアレス炉の比較
チャネル誘導炉とコアレス誘導炉の主な違い、それぞれの用途、および溶解のニーズに最適な炉の選び方を学びましょう。
熱処理における浸炭プロセスとは何ですか?靭性の高いコアを持つ耐摩耗性部品を作成する
浸炭が鋼の表面に炭素を添加して、優れた耐摩耗性とコアの靭性をどのように高めるかを学びましょう。ギア、ベアリングなどに最適です。
実験室におけるオーブンとファーネスの違いは何ですか?あなたの研究室に最適な熱処理ツールを選びましょう
ラボ用オーブンとファーネスの主な違い(温度範囲、用途、設計)を理解しましょう。プロセスに最適な選択をしてください。
熱処理の時間と温度は?材料特性を調整するためのガイド
熱処理の時間と温度が固定ではない理由を発見してください。材料の種類と望ましい結果が、特定の用途に最適なパラメーターをどのように決定するかを学びましょう。
デュアルトラック誘導炉とは何ですか?大容量金属溶解のための倍増パワー
デュアルトラック誘導炉がどのように2つの加熱ユニットを使用して、大規模な金属加工における溶解能力、速度、および循環を大幅に向上させるかを学びましょう。
誘導炉は交流(Ac)と直流(Dc)のどちらで動作しますか?交流の力の解き明かし
誘導炉が電磁誘導によって熱を発生させるために交流電源を必要とする理由、およびコアレス炉とチャネル炉の設計の主な違いを発見してください。
誘導炉は鉄を溶解できますか?鉄および合金の高性能でクリーンな溶解を実現
はい、誘導炉は鉄、鋼、合金の溶解に優れています。電磁誘導がいかにして鋳造所や研究室に正確で効率的な熱をもたらすかを学びましょう。
縦型炉と横型炉の半導体製造装置の違いは何ですか?優れた歩留まりと均一性を実現
パーティクル制御、熱均一性、ウェーハサイズ互換性など、縦型半導体炉と横型半導体炉の主な違いを探ります。
なぜ炉にグラファイトが使用されるのですか?極度の熱、純度、効率のために
グラファイトが高温炉の最高の選択肢である理由をご覧ください。比類のない熱安定性、化学的不活性、優れたエネルギー効率を提供します。
モリブデンはどれくらいの熱に耐えられますか?極限温度性能の解明
モリブデンとその合金の最高温度限界(1100℃から1900℃)と、雰囲気が性能にどのように影響するかを学びましょう。
高温酸化炉内のプロセス制御は、Zr-Nbインプラントの耐摩耗性をどのように向上させるのでしょうか?
酸化炉における精密な熱制御が、Zr-Nb合金を耐摩耗性に優れたセラミック表面の整形外科用インプラントに変える仕組みをご覧ください。
グラファイトドラムの回転周波数は、アルミニウム青銅鋳物の品質にどのように影響しますか? Shsプロセス精密マスター
グラファイトドラムの回転周波数が遠心力と密度を制御し、アルミニウム青銅SHS鋳造プロセスにおける空隙をなくす方法を学びましょう。
20Cr-25Ni-Nb鋼の処理における高温雰囲気炉の機能とは?専門家の見解
高温雰囲気炉が20Cr-25Ni-Nbオーステナイト系ステンレス鋼に不可欠な熱的隔離とアルゴン保護をどのように提供するかを学びましょう。
ラボオーブンとマッフル炉の違いは何ですか?熱処理プロセスに最適なツールを選択する
ラボオーブンとマッフル炉の主な違い(温度範囲、加熱方法、ラボ作業への理想的な用途)を理解しましょう。
金属の焼結はどのように機能するのか?強固な部品のための固相拡散ガイド
金属焼結がどのように熱と圧力を利用して金属粉末を溶融させずに融合させ、大量生産向けに強固で精密な部品を製造するかを学びましょう。
誘導炉の主な生成物は何ですか?精密合金のための高純度で均質な溶融金属
誘導炉がいかにして、高品質な合金製造のために、温度と組成を精密に制御された、清浄で均一な溶融金属を生成するかを学びましょう。
熱処理に使用される装置は何ですか?炉とシステムの完全ガイド
主要な炉から、プロセス制御、雰囲気管理、安全性に関する補助システムまで、不可欠な熱処理装置について解説します。
金属の焼鈍(アニーリング)にはどのくらいの時間がかかりますか?完璧な結果を得るためには、数分から数日かかります。
焼鈍時間は、金属の種類、厚さ、目標によって異なります。加熱、保持(ソーキング)、冷却の各段階が、最適な柔らかさと応力除去のプロセスにどのように影響するかを学びましょう。
セラミック材料を焼結するとどうなりますか?粉末から緻密な固体への変態
焼結が、原子拡散、緻密化、微細構造の変化を通じて、弱いセラミック粉末を緻密で強固な固体へとどのように変態させるかを学びましょう。
焼鈍(アニーリング)の異なる方法にはどのようなものがありますか?材料のニーズに合った適切な熱処理を選択する
延性、強度、被削性などの材料特性を制御するために、完全焼鈍、工程焼鈍、応力除去焼鈍、球状化焼鈍について学びましょう。
焼鈍(アニーリング)は鋼をより強くしますか?この熱処理の真の目的を発見する
焼鈍は鋼をより強くするのではなく、より柔らかく、より展性のあるものにします。このプロセスがどのように機械加工性を向上させ、鋼を加工のために準備するかを学びましょう。
アニーリングとは何か、そしてなぜ行われるのか?より軟らかく、より安定した材料を実現する
アニーリング熱処理が、制御された加熱と徐冷プロセスを通じて金属を軟化させ、応力を緩和し、加工性を向上させる方法を学びましょう。
アニーリングは硬度にどのように影響しますか?加工性を向上させるための金属軟化の科学
アニーリングは、内部応力を緩和し、結晶粒構造を微細化することで、材料の硬度を低下させます。このプロセスが、機械加工や成形のための延性をどのように高めるかをご覧ください。
レトルト炉の仕組みとは?高度な熱処理のための精密な雰囲気制御を解き明かす
レトルト炉が、どのように密閉容器内での間接加熱を利用して精密な雰囲気制御を実現しているかを学びましょう。これは窒化や焼結などのプロセスに不可欠です。
溶解に使用される炉の種類とは?材料に適した技術を選択する
誘導炉、電気アーク炉、キューポラ炉、るつぼ炉を比較します。材料、規模、純度のニーズに最適な溶解ソリューションを見つけてください。
誘導炉の利点は何ですか?優れた金属品質と効率を実現
誘導炉の主な利点を発見してください:卓越したエネルギー効率、クリーンな運転、正確な温度制御、そして優れた金属純度のための迅速な溶解。
鋳造にはどのような炉が使われますか?金属に適した加熱技術を選択する
金属鋳造用の誘導炉、るつぼ炉、電気アーク炉を比較します。あなたの金属、純度要件、生産規模に最適な炉のタイプを見つけてください。
石英管の高温耐性は?信頼性の高い高温処理を実現
石英管の安全な動作温度について学びましょう。連続使用(1100°C)、短時間最大(1200°C)、および重要な真空限界を含みます。
1800度のマッフル炉とは何ですか?先進材料のための高精度高温処理
1800°Cのマッフル炉について学びましょう:主要コンポーネント、間接加熱の利点、安全プロトコル、および材料科学における応用。
焼結にはどの炉が使われますか?用途に合った適切なシステムを選ぶためのガイド
材料、生産量、部品サイズに基づいて、バッチ式と連続式のシステムから温度制御まで、焼結炉を選択するための重要な要素を発見してください。
誘導炉の費用はいくらですか?溶解システム予算ガイド
誘導炉の費用は、容量、電力、自動化によって大きく異なります。特定の溶解ニーズに合わせて予算を立てる方法を学びましょう。
焼結の駆動力とは何か?より良い材料のための熱力学の理解
焼結がいかにして原子拡散を介して表面エネルギーを低減し、高密度で強固な材料を作り出すかを学びましょう。主要なメカニズムと実践的な制御について解説します。
鋼の焼なまし温度は何度ですか?完璧な軟らかさと延性を実現する
炭素含有量と処理タイプ(完全焼なまし、中間焼なまし、球状化焼なまし)に基づいた鋼の正しい焼なまし温度を学びましょう。材料特性を正確に制御します。
セラミックを加熱するとどうなりますか? 放射熱と熱安定性に関する詳細な考察
加熱されたセラミックがどのように熱バッテリーとして機能し、遠赤外線を放射して直接的で効率的な加熱を行うかについて学びます。その高い熱容量と安定性を理解しましょう。
熱処理炉とは?精密な材料変革へのガイド
熱処理炉が、どのように制御された熱サイクルを用いて、硬度や強度などの金属特性を産業用途向けに変えるのかを発見しましょう。
金属を何回焼きなましできますか?無限の加工性を実現するためのサイクルをマスターする
金属の焼きなまし(アニーリング)の実用的な限界を学びましょう。材料の損失、汚染、結晶粒の成長を防ぎ、毎回完璧な結果を得る方法を発見してください。
焼鈍(アニーリング)後、鋼はどうなりますか?優れた機械加工性と成形性を解き放つ
焼鈍が鋼をどのようにして柔らかく、延性が高く、内部応力のない状態にするかを学び、機械加工、成形、溶接用途での加工性を向上させます。
粉末冶金における焼結の種類とは?固相、液相、加圧法のガイド
粉末冶金における固相焼結、液相焼結、加圧焼結について学びましょう。密度、強度、コストに応じて適切な方法を選択してください。
焼結の機能は何ですか?粉末から優れた材料特性を実現する
焼結がどのように粒子を結合させ、密度を高め、セラミックスや金属のような先進材料の強度と導電性を向上させるかをご覧ください。
石英の高温形態は何ですか?Α-石英から軟化点までの主要な相
石英の高温相を発見:573°C以上でβ-石英、870°C以上でトリディマイト、そして1270°Cでの重要な軟化点。
焼結材料とは?高性能粉末冶金ガイド
焼結がいかにして金属およびセラミック粉末を溶融させることなく、丈夫で複雑な部品に変えるかをご覧ください。主な利点と用途を発見してください。
焼結金属部品はどのように作られるのか?粉末冶金プロセスのガイド
粉末の混合、成形、炉での加熱という3段階の焼結プロセスを学びましょう。強度と機能性を高めるための二次加工についてもご紹介します。
焼成炉とは何か?高温材料変換のガイド
セメント、鉱石、触媒などの材料において、焼成炉がいかにして揮発性成分の除去、水分除去、酸化誘発を促進するかを発見してください。
活性炭を再活性化するにはどうすればよいですか?吸着能力を回復し、コストを節約する
使用済み活性炭を再活性化し、その多孔性を回復し、コストを削減するための熱処理プロセスを学びましょう。手順、制限、および主な利点を理解してください。
高周波誘導溶解炉における周波数の影響とは?最適な溶解効率と制御を解き放つ
誘導炉の周波数が熱浸透、攪拌、効率にどのように影響するかを学びましょう。金属溶解用途に最適な周波数を選択してください。
グラファイト炉法とは?超高温を純粋かつ迅速に達成
グラファイト炉法を発見:真空または不活性雰囲気下で迅速かつ均一な加熱を行うための高温電気熱プロセス。
浸炭における炭素含有量は?部品の完璧な浸炭硬さを実現する
鋼部品の最適な硬度、耐摩耗性、靭性を実現するための理想的な浸炭炭素含有量(0.7%~1.2%)について学びましょう。
ボックス炉は何に使用されますか?熱処理、焼結、分析のための多用途ツール
ボックス炉が金属の熱処理、セラミックスの焼結、研究室や産業における材料分析にどのように使用されるかをご覧ください。その主要な用途を発見してください。
黒鉛炉の原理とは?直接抵抗加熱による極限温度の達成
黒鉛炉が焼結、アニーリング、高純度材料合成のために、直接抵抗加熱を利用して3000℃に達する方法を学びましょう。
誘導炉は何に使われますか?高速でクリーンな金属溶解と熱処理を実現
誘導炉が電磁誘導を利用して、高純度金属の溶解、合金化、精密熱処理用途にどのように使用されるかをご覧ください。
コアレス誘導炉とコアド誘導炉の違いは何ですか?鋳造所に最適なツールを選びましょう
コアレス炉とコアド炉の比較:金属溶解における設計、効率、柔軟性、用途の主な違い。
連続炉の例は何ですか?大量生産のためのコンベアベルト炉を発見する
コンベアベルト炉が、連続した大量生産プロセスにおいて、いかに比類のない一貫性とエネルギー効率を保証するかを学びましょう。
誘導炉の歴史とは?ファラデーの発見から現代の溶解力まで
マイケル・ファラデーの電磁誘導の原理から、エドウィン・ノースラップの1916年の画期的な発明、そして現代のソリッドステート電源に至るまで、誘導炉の進化を探ります。
黒鉛炉原子吸光分析における温度は何度ですか?多段階加熱プログラムの習得
黒鉛炉原子吸光分析における主要な温度段階(乾燥、熱分解、原子化)を学び、正確な低レベル検出を実現するために不可欠な要素を理解しましょう。
グラファイト炉の利点は何ですか?高温精度と純度を実現
グラファイト炉の主な利点をご覧ください:急速加熱、最大2000℃の温度均一性、そして敏感な材料のためのクリーンな雰囲気制御。
焼結サイクルとは?高密度で強度の高い部品を実現するための熱処理プロセスのガイド
焼結サイクルがいかにして制御された加熱と冷却を用いて粉末粒子を固体で高性能な部品に融合させるかを学びましょう。
三段階焼結プロセスとは何ですか?ブレンド、成形、加熱のガイド
粉末冶金における3段階の焼結プロセス(ブレンド、成形、加熱)を学び、粉末を強靭で高密度の部品へと変える方法を理解しましょう。
石英は何度で可鍛性(展延性)になりますか?重要な温度と純度要因を解説
石英の軟化範囲(1670°C~1745°C)と、純度が実験室用途での高温性能にどのように影響するかを発見してください。
マッフル炉とボックス炉の違いは何ですか?適切なラボ用炉を選ぶためのガイド
マッフル炉とボックス炉の主な違いを理解しましょう。一方は加熱方法、もう一方は形状です。あなたのラボの用途にどちらが適しているかを知りましょう。
ピット炉の仕組みとは?熱処理における長尺部品の歪みを防ぐ方法
熱処理中にピット炉の垂直設計が長尺部品の垂れ下がりを防ぐ仕組みを学びましょう。電気、ガス、誘導加熱の方法を比較します。
インダクトサーム炉とは?電磁力を活用した高速・高純度溶解
インダクトサーム誘導炉が電磁場を利用して、比類のない速度、純度、効率で金属を溶解する方法をご覧ください。
誘導溶解炉はどのように機能しますか?非接触で効率的な金属溶解の力を解き放つ
誘導溶解炉が電磁場を利用して金属内部で直接熱を発生させ、迅速、クリーン、かつ効率的な溶解プロセスを実現する方法をご覧ください。
焼入れ炉の温度は何度ですか?優れた金属硬度を実現するための正確な熱処理
さまざまな鋼合金に対応する重要な焼入れ炉の温度(780°C~1300°C)を学びましょう。最適な硬度と靭性を実現するためのオーステナイト化の科学を習得します。
ナノチューブが特別な理由とは?強度、導電性、軽量性を兼ね備えた革新的な素材を発見
カーボンナノチューブのユニークな特性を探る:鋼鉄の100倍の強度、優れた電気・熱伝導性、そして高度な用途向けの高いアスペクト比。
Cvdによるカーボンナノチューブ成長のメカニズムとは何ですか?先進材料のための制御された合成を解き放つ
炭素源の分解、炭素の溶解、ナノチューブの析出による精密制御のための、触媒支援CVDメカニズムを学びましょう。
誘導炉における誘導加熱は何に依存していますか?迅速でクリーンな金属溶解を実現します
誘導炉が電磁誘導とジュール加熱をどのように利用して、非接触で効率的な金属溶解を行うかをご覧ください。高純度合金に最適です。
最も効率的な炉の種類は?あなたの家と予算に最適な暖房ソリューションを見つけましょう
凝縮式ガス炉、電気炉、変調式炉を比較します。AFUE定格、燃料費、設置が家の暖房効率にどのように影響するかを学びましょう。
希土類酸化物製造における高温炉の機能は何ですか?高純度材料の安定性を達成する
高温炉が化学分解と安定化をどのように促進し、高純度の希土類酸化物粉末を製造するかをご覧ください。
誘導炉で高周波が必要なのはなぜですか、またどのような場合ですか?材料の表面加熱を精密に実現する
表面硬化、ろう付け、薄い部品の加熱において、高周波を誘導炉でいつ使用すべきか、精密で浅い熱制御で学びましょう。
炉室の用途とは?制御された高温処理のガイド
焼結、アニーリング、硬化、および材料分析のための炉室の主要な機能を、研究室と産業の両方で発見してください。
なぜ耐火金属が炉の建設に使用されるのか?極限温度性能を解き放つ
モリブデンやタングステンなどの耐火金属が、比類ない耐熱性と強度を提供し、高温炉部品に不可欠である理由を学びましょう。
前へ
Page 7
次へ