よくある質問

Related to: モリブデン真空熱処理炉

精密な温度制御は、Fecocrnimntic高エントロピー合金にどのような影響を与えますか?微細構造の進化をマスターする

真空熱間プレス焼結における精密な温度制御が、高エントロピー合金の結晶粒径と相変態を最適化する方法を学びましょう。

ニアアルファチタン合金材料において、真空炉内での拡散接合プロセスが重要なのはなぜですか?

真空拡散接合が酸化を防ぎ、原子レベルの融合を保証して高性能チタン合金ラミネートを製造する方法をご覧ください。

適切なホットゾーンを炉で使用する利点は何ですか? 効率と製品品質を向上させる

適切なホットゾーンが温度均一性を向上させ、エネルギーコストを削減し、炉の寿命を延ばして、一貫した熱処理結果を得る方法を学びましょう。

Cr2Alc Max相コーティングにはどのような真空炉が必要ですか?高純度合成のための精密制御

Cr2AlC合成に不可欠な機能:高真空、不活性雰囲気、酸化を防ぎ相純度を確保するための精密な熱制御について学びましょう。

タングステンコーティングのワークフローにおいて、高温真空炉はどのような役割を果たしますか?ストレスリリーフを今日最適化しましょう。

真空炉がタングステンコーティングの準備において、ストレスリリーフ、脱ガス、結晶構造の完全性をどのように可能にし、優れた材料結果をもたらすかを発見してください。

真空中の温度と圧力の関係とは?最適な真空性能のための熱制御の習得

温度が真空システムにおけるアウトガスと圧力にどのように影響するかを理解します。超高真空とプロセスの安定性を達成するために、加熱と冷却の利用方法を学びます。

焼結の段階とは?粉末から部品へのプロセスを習得するためのガイド

焼結の3つの主要な段階:粉末準備、成形、熱処理について学びます。密度、収縮、最終的な特性を制御する方法を理解しましょう。

真空焼入れは何のために使われますか?優れた強度と完璧な仕上がりを実現

真空焼入れが、酸素を含まない環境で酸化や変形を防ぎ、いかにして丈夫でクリーン、かつ寸法安定性に優れた金属部品を生み出すかをご覧ください。

焼き入れと熱処理の違いは何ですか?主要な冶金プロセスをマスターする

違いを学びましょう:焼き入れは、金属の硬度と特性を変化させるための、より広範な熱処理プロセス内における急速な冷却ステップです。

真空炉でろう付けは行われますか?優れた接合強度と純度を実現

航空宇宙、医療、エレクトロニクス分野で、なぜ真空炉ろう付けが強力でクリーンな接合に不可欠なのかを学びましょう。その利点と限界を発見してください。

真空炉を使用する理由とは?熱処理における究極の純度と精度を実現する

真空炉の主な利点を発見してください:酸化の防止、均一な加熱の保証、および重要な用途のための優れた材料純度の達成。

真空熱処理炉はどのように機能しますか?完璧で酸化のない金属部品を実現する

真空炉がいかにして酸素を除去して酸化を防ぎ、クリーンで明るく高性能な金属部品の精密な熱処理を可能にするかを学びましょう。

モリブデン(Mo)の熱処理とは?延性を高めるための応力除去焼鈍の習得

モリブデンの熱処理が、硬化ではなく応力除去焼鈍に依存する理由を学び、真空または水素雰囲気下での延性の向上と破断の防止について理解しましょう。

真空焼鈍の利点は何ですか?優れた材料特性を備えた、完璧で酸化物のない部品を実現します

真空焼鈍の主な利点を発見してください:航空宇宙および医療産業における重要部品の応力緩和、延性の向上、そしてクリーンで酸化物のない表面です。

鉄は蒸発するのか?気体金属の背後にある極限科学を探る

鉄が2,862℃でどのように蒸発するか、星や溶接におけるその役割、そして物質の相転移の物理学について学びましょう。

真空焼入れに適した材料は何ですか?高合金鋼および敏感な金属の優れた表面品質を実現する

優れた表面仕上げと最小限の歪みのために、工具鋼、ステンレス鋼、チタン合金など、真空焼入れに理想的な主要材料をご覧ください。

真空焼き入れとは?優れた表面品質と硬度を実現

真空焼き入れがいかに酸化を防ぎ、クリーンで寸法安定性に優れた金属部品を生み出すかをご覧ください。航空宇宙、医療、工具産業に最適です。

熱処理の条件とは?優れた金属特性のための温度、時間、冷却の習得

金属の硬度、強度、延性を制御し、最適な性能を引き出す熱処理の3つの主要な変数(温度、時間、冷却速度)について学びましょう。

熱処理における加熱速度の影響とは何ですか?硬さ、微細組織、および歪みの制御

熱処理における加熱速度が、表面/芯部の硬さ、微細組織、および亀裂のリスクにどのように影響するかを学びましょう。最適な結果を得るために、この重要な変数を習得してください。

金属を熱処理できる回数は何回ですか?材料の完全性の限界を理解する

脱炭、結晶粒の成長、鋼や合金の歪みのリスクなど、金属の熱処理サイクルを制限する要因について学びます。

金属をより強くするために熱処理するにはどうすればよいですか?焼入れ、焼戻しのプロセスをマスターする

焼入れ、焼戻しによって金属を強化する方法を学びましょう。最大の硬度と靭性を得るために微細構造を変換する主要なステップを理解してください。

熱処理は密度を変化させますか?はい、そしてそれが精密加工において重要である理由

オーステナイトからマルテンサイトへの相変態など、熱処理が材料密度をどのように変化させるかを学び、製造における寸法安定性への影響を理解しましょう。

一般的に使用される焼入れプロセスは何種類ありますか?全体焼入れと表面焼入れから選択してください。

均一な強度を得るための全体焼入れと、強靭な芯部と耐摩耗性の表面を得るための表面焼入れという、2つの主要な鋼の焼入れ方法を探ります。

鋼の焼入れの用途は何ですか?硬度、耐摩耗性、性能に関するガイド

切削工具、ギア、ベアリングなど、鋼の焼入れの主要な用途について学びましょう。ニーズに合わせて浸炭焼入れや焼入れなどの方法を比較してください。

鋼の焼入れは寸法を変化させますか?熱的・冶金学的変化の力をマスターする

鋼の焼入れがどのように寸法変化と歪みを引き起こすかを理解する。予測可能な結果を得るために、熱収縮と相変態を制御する方法を学ぶ。

炉はんだ付けのプロセスとは?大量生産、高信頼性の接合を実現する

大容量アセンブリのためのステップバイステップの炉はんだ付けプロセス、大気制御や熱プロファイリングを含め、強固でクリーンな接合を実現する方法を学びましょう。

熱処理工程の欠点は何ですか?強度向上のためのトレードオフを理解する

金属の硬化の主な欠点、すなわち脆性の増大、内部応力、歪み、被削性の低下を探り、それらを管理する方法について解説します。

真空ろう付けの熱処理とは何ですか?強力でクリーンな接合を実現するための熱サイクルをマスターする

真空ろう付けの熱サイクルの各段階(排気から制御冷却まで)を学び、酸化物フリー、フラックスフリーで高強度の金属接合を確実に実現する方法。

真空熱処理とは何ですか?完璧で高性能な金属部品を実現する

真空熱処理が酸化や脱炭を防ぎ、重要な部品に対して優れた機械的特性とクリーンな表面仕上げを保証する方法を学びましょう。

真空炉の用途は何ですか?比類のない材料の純度と性能を実現

ろう付け、焼結、焼鈍、脱ガスにおける真空炉の主な用途を発見し、酸化を防ぎ、優れた材料品質を保証します。

ろう付けは溶接よりも安価ですか?生産における金属接合コストを最適化する

大量生産、修理、異種金属の接合におけるろう付けと溶接のコストを比較します。労働力、自動化、材料の要因を理解しましょう。

真空炉熱処理とは?優れた、汚染のない金属強化を実現

真空炉熱処理が、制御された真空中で金属部品を強化し、酸化を防ぎ、均一で高品質な結果を保証する方法をご覧ください。

真空炉の構成要素とは?5つの主要システムを解説

真空炉の5つの不可欠な構成要素であるチャンバー、加熱、真空、冷却、制御システム、そしてそれらがどのように連携して機能するかを学びましょう。

真空熱処理のプロセスとは?優れた材料性能と純度を実現

真空熱処理の主要な段階(排気、加熱、保持、焼入れ)を学び、無酸素環境で優れた材料特性を実現する方法を理解しましょう。

ろう付けはどのような用途で使用されますか?航空宇宙、自動車、医療機器の金属接合

HVAC、自動車、航空宇宙、医療機器におけるろう付けの用途を探ります。異種金属や複雑なアセンブリの接合方法について学びましょう。

ろう付けのために鋼を加熱するのに必要な温度はどのくらいですか?ろう材の主要な範囲

鋼のろう付けには、ろう材の融点によって1100°F~2150°Fに加熱する必要があります。銀、銅、ニッケル合金について学びましょう。

照射材料サンプルの高真空アニーリング炉が必要なのはなぜですか?純粋な欠陥分析を保証する

酸化、水素吸収を防ぎ、データの整合性を確保するために、照射材料にとって高真空アニーリングが不可欠である理由をご覧ください。

真空加熱炉の役割は何ですか?12%Cr鋼の熱処理中の材料完全性の保護

真空加熱炉が12%Cr鋼の処理において、酸化を防ぎ、合金元素を保持し、微細構造の均一性を確保する方法を学びましょう。

誘導炉における焼結とは?耐久性のある材料のための熱処理プロセスをマスターする

誘導炉での焼結がどのように粉末を固体部品に変え、ライニングを硬化させるかを学びましょう。温度制御、雰囲気、および主要な用途を理解してください。

Pwhtにおける高温焼鈍炉の役割は何ですか?合金800H接合部の完全性を回復する

高温焼鈍炉がPWHTを通じて合金800H接合部をどのように回復させ、偏析を除去し、機械的靭性を向上させるかを学びましょう。

焼なましと焼入れの違いとは?主要な熱処理プロセスを習得する

金属の焼なまし(軟化)と焼入れ(強化)の核となる違いについて、プロセス手順、目的、および結果として得られる特性を含めて学びましょう。

液相焼結と固相焼結の違いは何ですか?材料に適した方法を選択する

液相焼結と固相焼結を比較:最適な材料加工のためのメカニズム、密度、純度、温度における主要な違い。

金属を過熱処理することは可能ですか?金属部品を台無しにする重大な間違いを避けましょう

過熱、焼きなまし、焼き戻しすぎ、脱炭など、金属の過熱処理による4つの破壊モードと、それらを防止する方法を学びましょう。

熱処理は材料選定にどのように影響しますか?望ましい特性のために適切な合金を選びましょう

材料の化学組成が熱処理への応答をどのように決定するかを学びましょう。目標の硬さ、強度、靭性を達成するために、適切な鋼またはアルミニウム合金を選択します。

焼なまし、焼入れ、焼戻しの違いは何ですか?研究室のための金属特性を習得する

焼なまし、焼入れ、焼戻しの主な違いを学び、研究室の用途に合わせて金属の硬度、靭性、延性を制御しましょう。

焼きなまし(アニーリング)は焼き戻し(テンパリング)と同じ工程ですか?熱処理における両者の相反する目的を理解する

いいえ、焼き戻しと焼きなましは異なる工程です。焼きなましは柔らかさを目指すのに対し、焼き戻しは硬化後の脆さを低減します。主な違いを学びましょう。

粉末焼結のプロセスとは?金属・セラミック成形のための完全ガイド

粉末焼結の3つの段階(混合、成形、熱結合)を学びましょう。強靭で精密な金属・セラミック部品を作成する方法を理解します。

熱処理の機能とは?優れた性能のために金属特性を調整する

熱処理が、制御された加熱および冷却プロセスを通じて、硬度、靭性、安定性などの金属特性をどのように変化させるかを発見してください。

溶融プロセスの種類とは?製錬から浮遊溶融まで、究極の純度を求めて

主要な工業用溶融プロセスである製錬、誘導、アーク、浮遊溶融について探ります。純度、規模、材料に応じて適切な方法を選択する方法を学びましょう。

真空中で熱伝達は起こり得ますか?はい、宇宙で熱が伝わる唯一の方法である放射によって起こります。

真空中の熱伝達の仕組みを学びましょう。伝導と対流は停止しますが、熱放射は依然として発生し、魔法瓶から宇宙船に至るまですべてに影響を与えます。

焼入れの熱処理プロセスとは?最大の硬度を達成するためのガイド

焼入れが急速冷却によって金属の硬度をどのように高めるかをご覧ください。そのプロセス、トレードオフ、そして焼き戻しが不可欠である理由を理解しましょう。

金属を二度熱処理することは可能ですか?複数回のサイクルで欠陥を修正し、部品を適合させる

欠陥の修正、溶接後の特性回復、または部品の機能変更のために、金属部品を再熱処理する時期と方法を学びます。リスクとプロセスを理解しましょう。

焼き入れ焼き戻しと焼鈍しは同じですか? 適切な鋼の熱処理を選択するためのガイド

鋼の熱処理において、硬度と靭性を高めるための焼き入れ・焼き戻しと、軟らかさと機械加工性を高めるための焼鈍しの主な違いを学びましょう。

Tio2/Al-Zr二層薄膜において、精密な基板加熱が不可欠である理由とは? Aa-Mocvd熱制御をマスターする

TiO2/Al-Zr二層薄膜作製において、773 Kが前駆体分解とAl3Zr相強化の重要温度である理由を学びましょう。

マグネリ相酸化チタンの還元において、高性能真空炉はどのような役割を果たしますか?

高性能真空炉が、ナノ粒子の形態を維持しながら、550℃でTi4O7の精密な還元をどのように促進するかをご覧ください。

真空熱間プレス炉からの機械的圧力は、B4C/Al複合材料の焼結をどのように促進しますか?

真空熱間プレス炉における一軸圧力が、B4C/Al複合材料の相対密度99.1%を達成するためにどのように塑性流動を誘発するかを学びましょう。

Ni-30Cr研究における高温アニーリング炉の主な機能は何ですか?マスター合金の均質化

高温アニーリング炉がNi-30Cr合金に均一な微細構造を作成し、正確で再現性の高い研究結果をもたらす方法を学びましょう。

Ti-43Al-4Nb-1Mo-0.1Bの焼結に高真空が必要なのはなぜですか?純度と破壊靭性を確保する

酸化を防ぎ、材料の密度を最大化するために、Ti-Al合金の焼結に高真空環境(10⁻³ Pa)が不可欠である理由を学びましょう。

真空熱間プレス炉内でZrb2-Sic複合材料を焼結するのに真空環境が必要なのはなぜですか?

真空熱間プレスが酸化を防ぎ、ZrB2-SiC複合材料を精製して完全な緻密化と優れた機械的強度を実現する方法を学びましょう。

硫化物電解質合成中に石英管内で原料を真空シールする機能は何ですか?

硫化物合成において石英管内での真空シールが不可欠な理由を学びましょう。酸化の防止と揮発性蒸気圧の管理についてです。

ニオブパーミネーター用の真空ろう付け炉の主な機能は何ですか?高信頼性の気密シールを実現する

真空ろう付け炉が酸素のない環境を作り出し、ニオブと鋼を接合して、漏れのないシールと材料の純度を保証する方法を学びましょう。

チタンめっきダイヤモンド表面における高真空熱処理炉の役割は何ですか?優れた接合を実現する

高真空炉が酸化防止と炭化チタン形成を通じて、チタンとダイヤモンドの冶金的接合をどのように可能にするかを学びましょう。

真空環境はダイヤモンド銅複合材の焼結にどのように影響しますか?熱損傷からの保護

高温焼結中の銅複合材におけるダイヤモンド粒子の酸化腐食や黒鉛化を防ぐ真空環境について学びましょう。

Znsセラミックス製造における真空炉の具体的な役割は何ですか?光学グレードの材料純度を達成する

真空炉がZnSナノパウダーを550℃~850℃で焼鈍し、不純物を除去してセラミックスの高い光学透過性を確保する方法を学びましょう。

一括熱処理プロセスとは何ですか?コアから表面まで均一な材料特性を実現する

一括熱処理が、金属部品全体にわたって均一な硬度、延性、靭性を提供し、要求の厳しい用途で一貫した性能を発揮する方法を学びましょう。

浸炭焼入れの2つの目的は何ですか?優れた耐摩耗性と耐衝撃性を実現する

浸炭焼入れの二重の目的を発見してください:硬く耐摩耗性の表面を作りながら、優れた部品性能のために強靭で延性のある内部コアを維持することです。

真空焼戻し(テンパリング)のプロセスとは?硬度と靭性の完璧なバランスを実現する

焼き入れ鋼の脆性を低減し、表面酸化を防ぎ、均一な材料特性を確保するための真空焼戻しの正確な手順を学びましょう。

熱処理は導電性に影響しますか?性能のための材料特性を習得する

焼なまし、焼入れ、時効硬化が材料の微細構造を変化させることで、電気伝導率と熱伝導率をどのように変化させるかを学びましょう。

真空ろう付けのプロセスとは?高純度で強力な金属接合を実現

制御された環境下で、クリーンでフラックスフリーな、強力な金属間の冶金結合を作成するための真空ろう付けプロセスの段階的な手順を学びましょう。

真空焼鈍プロセスとは何ですか?純粋で酸化のない金属処理を実現する

真空焼鈍が金属を軟化させ、内部応力を緩和し、表面酸化を防ぎ、汚染のない環境で優れた材料特性を達成する方法を学びましょう。

真空熱処理の欠点とは?高コストと技術的限界を解説

高額な設備コスト、遅い冷却速度、特定の合金に対する材料の制約など、真空熱処理の主な欠点を探ります。

マグネトロンスパッタリング装置とは?先端材料のための精密薄膜成膜

マグネトロンスパッタリングの仕組みをご覧ください:半導体、医療機器、光学部品に高純度で機能的な薄膜を作成するための真空ベースのプロセスです。

ステンレス鋼のろう付けが難しいのはなぜですか?強力な接合のために酸化クロムのバリアを克服する

酸化クロムがステンレス鋼のろう付けを困難にする理由と、信頼性の高い接合を実現するためのフラックスや雰囲気制御などの実績ある方法について学びましょう。

真空中ではどのように熱が伝達されますか?純粋さと精度を実現するための熱放射の習得

真空中では熱が放射のみによって伝達され、優れた材料の完全性を実現するための熱処理のような汚染のないプロセスを可能にする方法を発見してください。

焼結操作における加熱はどのように行われますか?高密度で強度の高い部品を実現するための主要な方法を習得しましょう

炉、真空誘導、マイクロ波などの焼結加熱方法について学び、原子拡散を制御して最適な材料密度を達成する方法を理解しましょう。

熱処理の例にはどのようなものがありますか?マスターアニーリング、焼入れ、焼戻し、浸炭焼入れ

主要な熱処理プロセスを探る:軟化のための焼なまし、硬化のための焼入れ、靭性のための焼戻し、耐久性のある表面のための浸炭焼入れ。

焼結工程完了後に行う必要のあるプロセスは何ですか?焼結後の重要工程をマスターする

制御された冷却、機械的仕上げ、表面処理といった必須の焼結後プロセスを学び、部品の完全性と性能を確保する方法を習得します。

熱処理は微細組織にどのような影響を与えるか?硬度と靭性のバランスをマスターする

焼鈍し、焼入れ、焼戻しなどの熱処理プロセスが、目的の機械的特性を達成するために金属の原子構造をどのように操作するかを学びましょう。

金属の5つの基本的な熱処理プロセスとは?焼なまし、焼入れなどをマスターする

金属の主要な5つの熱処理プロセスを学ぶ:焼なまし、焼ならし、焼入れ、焼戻し、表面硬化。硬度、靭性、延性を最適化します。

金属の構造を強化するためにどのような熱処理が使用できますか?焼入れ、焼戻しなどを習得しましょう

焼入れ、焼戻し、浸炭焼入れ、析出硬化によって、特定の用途に合わせて鋼やアルミニウムなどの金属を強化する方法を学びましょう。

焼結中の収縮に影響を与える要因は何ですか?精密部品の寸法変化を制御する

粉末特性、圧縮、焼結サイクルパラメータ(温度、時間、雰囲気)が収縮と最終部品密度にどのように影響するかを学びましょう。

ろう付けで何が接合できますか?多用途な金属・セラミックス接合ソリューションを解き放つ

ろう付けが、鋼、銅、チタン、セラミックスなどの多様な材料を、精密な溶加材の濡れ性と制御された雰囲気を用いてどのように接合するかをご覧ください。

タングステンと銅の真空拡散接合において、機械的圧力はどのような役割を果たしますか? 確実な接合の鍵

真空炉内で機械的圧力が原子拡散を促進し、表面粗さを克服し、高強度なタングステン・銅接合を確保する方法を学びましょう。

高温雰囲気真空炉において、不活性ガス技術はどのように温度を制御しますか?優れた材料を実現するための精密な冷却

不活性ガス技術が、高純度処理と優れた材料特性を実現するために、真空炉で迅速かつ均一な冷却を可能にする方法をご覧ください。

真空熱処理プロセスとは何ですか?高性能金属の純度と精度を実現する

真空熱処理が、いかにして酸化、脱炭、脆化を防ぎ、優れた金属特性と表面仕上げを実現するかを学びましょう。

高温真空焼結炉とは何ですか?最高の純度と材料密度を実現する

真空焼結炉が、いかにして空気のない環境で極度の熱を利用し、汚染なしに高純度、高強度の材料を作り出すかを学びましょう。

熱処理工程における欠陥にはどのようなものがありますか?亀裂、反り、軟点(ソフトスポット)の防止

焼入れ亀裂、歪み、脱炭などの一般的な熱処理欠陥と、正確な工程管理によってそれらを防止する方法について学びましょう。

照射後のTicrnにはなぜ高真空アニーリング炉が必要なのですか? 酸化防止と安定性の回復

高真空アニーリング炉がTiCrNサンプルの放射線誘起欠陥を修復し、酸化を防ぎ、密着性を向上させる方法を学びましょう。

熱処理の4つの種類は何ですか?主なものとして、焼きなまし、焼きならし、焼き入れ、焼き戻しがあります。

焼きなまし、焼きならし、焼き入れ、焼き戻しという4つの主要な熱処理プロセスについて学びましょう。それぞれが硬度や延性などの金属特性をどのように変化させるかを理解します。

真空熱間プレス焼結炉は、Tzcモリブデン合金の密度をどのように向上させますか?密度98%以上を達成

真空熱間プレスが2000℃の熱と40MPaの圧力を使用して、TZCモリブデン合金の気孔率を除去し、優れた材料密度を実現する方法を学びましょう。

工業用ろう付けプロセスとは?強力で永久的な金属接合のためのガイド

アセンブリに強力で永久的な金属接合を作成するための、炉および真空法を含む工業用ろう付けの原理を学びましょう。

熱処理プロセスはどのように機能しますか?用途に合わせて材料特性を調整する

制御された加熱および冷却サイクルが、硬度や靭性などの金属特性をどのように変化させるかを学びましょう。焼きなまし、焼き入れ、焼き戻しのプロセスを習得してください。

3つの主要な熱処理とは?焼なまし、焼入れ、焼戻しをマスターする

焼なまし、焼入れ、焼戻しという3つの主要な熱処理について学びましょう。これらの処理が金属の硬度、靭性、延性などの特性をどのように変化させるかを理解します。

熱処理と温度が金属の特性に与える影響とは?硬度、靭性などをマスターする

制御された加熱および冷却プロセスを通じて、熱処理が硬度、延性、靭性などの金属特性をどのように変化させるかを学びます。

熱処理とは簡単に言うと何ですか?材料特性を変化させるためのガイド

制御された加熱と冷却を用いて、金属の強度、硬度、靭性などの特性を特定の用途に合わせて変化させる熱処理の方法を学びましょう。

材料の熱処理において最も重要な3つの要因は何ですか?温度、時間、冷却速度の制御

温度、保持時間、冷却速度を正確に制御することで材料の熱処理を習得し、望ましい硬度、靭性、強度を実現します。

熱処理の品質に影響を与える要因は?温度、雰囲気、プロセス制御の習得

高品質な熱処理の鍵となる要因を発見しましょう:正確な温度制御、炉内雰囲気の選択、そして材料特性を最適化するための加熱・冷却速度の管理。

熱処理にはどの炉が使われますか?材料に合った炉を選ぶためのガイド

真空炉が精密な熱処理に最適な理由をご覧ください。重要な用途において、優れた制御性、純度、再現性を提供します。

真空ろう付けと拡散接合の違いは何ですか?適切な接合プロセスの選択

真空ろう付けはろう材を使用しますが、拡散接合は固相原子結合を形成します。どちらのプロセスがあなたの用途に適しているかをご覧ください。

金属の熱処理にはどのくらいの時間がかかりますか?タイムラインを決定する3つの段階

熱処理時間は1時間未満から数日まで様々です。金属部品の総処理時間を決定する、加熱、保持、冷却という3つの重要な段階について学びましょう。