圧縮成形法の重要性とは?大型複合材部品で優れた強度を実現する
高強度で寸法安定性に優れ、表面仕上げの美しい複合材部品を製造するための圧縮成形法の主な利点をご覧ください。
射出成形機のショット容量とは何ですか?欠陥のない部品のためにショットサイズを最適化しましょう
射出成形におけるショット容量とは何か、その計算方法、そして欠陥を回避し部品品質を確保するために20/80ルールがなぜ重要なのかを学びましょう。
射出成形機の重要性とは?大量生産と精密製造の実現
射出成形機が、複雑で一貫性のあるプラスチック部品を比類のない速度、精度、コスト効率で大量生産するために不可欠である理由をご覧ください。
造型機は何に使用されますか?高品質な金属部品のための砂型鋳造を自動化
造型機がどのように砂型鋳造を自動化し、金属部品の大量生産向けに精密で一貫性のある鋳型を作成するかを学びましょう。
射出成形で作れる製品とは?量産を支えるエンジン
家電製品から自動車部品まで、射出成形によって作られる幅広い製品と、なぜそれが大量生産に理想的なのかを発見してください。
射出成形機は何を製造しますか?あなたの生活の中のプラスチック部品を大量生産する
射出成形機がどのようにして、消費財、自動車、医療、包装業界向けの耐久性のある複雑なプラスチック製品を生み出すかをご覧ください。
ふるい分けのプロセスとは?精密な粒度分析ガイド
品質管理および材料特性評価における正確な粒度分布分析のための、標準化されたふるい分けプロセスを学びましょう。
粒度分布のためのふるいサイズとは何ですか?AstmおよびIso規格へのガイド
標準ふるいサイズ(ASTM E11、ISO 3310)、メッシュ番号、および正確な粒度分析のためのふるい積み重ねの構築方法について学びます。
なぜふるい分け分析が必要なのでしょうか?粒度管理による材料の品質と性能の確保
ふるい分け分析が、品質管理、材料の一貫性、および業界標準への準拠のために、いかに費用対効果の高い粒度分布データを提供するのかを発見してください。
ふるい分け分析にはどのような装置が使用されますか?信頼性の高い粒度測定システムを構築する
ふるい分け分析に不可欠な装置:試験用ふるい、機械式シェーカー、天秤についてご紹介します。正確な粒度分布を確保する方法を学びましょう。
ふるい分け法の使用における一つの限界は何ですか?非球形粒子に関する問題
ふるい分け法が球形粒子を仮定していることが主要な限界であり、細長い粒子や平たい材料では不正確な結果につながる理由を学びましょう。
ふるい分け分析の限界とは?粒子特性評価における高価なエラーを回避する
ふるい分け分析の主な限界(粒子形状の仮定、サイズ制限、低データ解像度)について学び、結果の信頼性を損なう可能性を理解しましょう。
ふるい分け分析における粒度測定に影響を与える可能性のある問題は何ですか?正確な結果を得るための一般的なエラーを回避する
信頼性の高い粒度測定を確実にするために、機器の限界、手順上の間違い、粒子の特性によるふるい分け分析のエラーを防ぐ方法を学びましょう。
ふるい分け試験で何がわかるのか?正確な粒度分布のためのガイド
ふるい分け試験が、品質管理、プロセス最適化、材料特性評価のために粒度分布をどのように決定するかを学びましょう。
ふるい分けのAstm規格は何ですか?正確な粒度分析のための二大柱をマスターする
信頼性の高い粒度分析結果を得るために、ふるいの校正に関するASTM E11と試験方法に関するASTM C136の重要な役割を学びましょう。
ふるい分け分析における誤差の可能性のある原因は何ですか?正確な結果を得るために、これらの一般的な落とし穴を避けましょう
サンプル、機器の損傷、手順の誤りなど、ふるい分け分析における主な誤差源を学び、信頼性の高い粒度データを確保しましょう。
ふるい分け試験の規格とは?正確な粒度分析のためのガイド
研究室での正確で再現性のある粒度分析のために、ASTM E11やISO 3310-1などのふるい分け試験規格について学びましょう。
ふるい分け試験の利点は何ですか?迅速で費用対効果の高い粒子分析を実現
ふるい分け分析の主な利点、すなわち、シンプルさ、スピード、費用対効果、そして信頼性の高い粒度分布のための高い再現性を発見してください。
誘導溶接はろう付けと同じですか?金属接合における重要な違いを解読する
誘導溶接とろう付けの根本的な違いを学びましょう。最適な強度と材料適合性を得るために、それぞれのプロセスをいつ使用すべきかを理解してください。
ふるい分けによる粒度分析に影響を与える要因とは?正確な結果を得るための主要変数をマスターする
ふるい分け時間、運動、試料質量、材料特性が粒度分析の精度と再現性にどのように影響するかを学びます。
ふるいの種類はいくつありますか?材料分析に適したふるいを選ぶ
織り金網、打ち抜き板、電鋳メッシュという3つの主要なふるいの種類について学び、用途の精度と耐久性のニーズに合わせて適切なものを選ぶ方法を理解しましょう。
ふるい分け法の限界とは何ですか?精度と粒子サイズの課題の理解
微粉末の精度問題、目詰まり、オペレーターのばらつきなど、粒子サイズ分析におけるふるい分けの主な限界を探ります。
ふるい分け分析を行う際に取るべき予防措置は何ですか?正確な粒度データを確保する
ふるい分け分析の重要な予防措置:サンプルの準備、ふるいの洗浄、標準化された手順。信頼できる粒度分布の結果を得るためにエラーを避ける。
乾式ふるい分け分析は、湿式ふるい分け分析よりも正確ですか?材料に最適な方法の選択
正確な粒度分布を得るために、乾式ふるい分けと湿式ふるい分けのどちらを使用すべきかを学びましょう。土壌、骨材、微粒材料にとって重要です。
ふるい分け分析の精度はどの程度か?信頼性の高い粒度分布データを得る
適切な手順、サンプルサイズ、および粒状材料に対する限界を理解することによって、正確なふるい分け分析結果を確実にする方法を学びましょう。
ふるい分け試験はどのように機能するのか?正確な粒度分布分析のためのガイド
ふるい分け試験が、品質管理や様々な産業における材料挙動の予測のために、粒度分布を測定するためにどのように機能するかを学びましょう。
粒度分布試験のためのふるい分析とは?信頼性の高い粒度測定ガイド
建設や化学などの産業における品質管理のために、ふるい分析が粒度分布を決定する仕組みを学びましょう。
ふるい分け分析は何に使用されますか?正確な粒度測定で材料の品質と一貫性を確保する
ふるい分け分析が建設、製造などにおける品質管理のために粒度分布をどのように決定するかを学びます。材料の一貫性に不可欠です。
ふるいの有効径とは?土壌の透水性と安定性のためのD10を理解する
ふるい分け分析によって決定される土壌サンプルの有効径(D10)が、工学プロジェクトにおける透水性と排水性をどのように予測するかを学びましょう。
ふるい分け分析に推奨される試料サイズはどのくらいですか?正確な結果を得るために過負荷を避けてください。
ふるい分け分析に最適な試料サイズ(25~100g)と、正確な粒度分布データを得るために過負荷を防ぐ方法を学びましょう。
ふるい分け分析は何に適していますか?粒度分布試験のガイド
建設、製造、製薬などの業界で粒度分布を調べるために、いつふるい分け分析を使用すべきかを学びましょう。
ふるい分け試験が重要なのはなぜか?品質管理と製品の一貫性の鍵
医薬品や建設などの業界で、粒子径分析が製品の品質、一貫性、性能を保証するために不可欠である理由を学びましょう。
乾式ふるい分け分析と湿式ふるい分け分析の違いは何ですか?あなたの材料に合った正しい方法を選びましょう
乾式と湿式のふるい分け分析の主な違いと、正確な粒度分布の結果を得るために正しい方法を選択する方法を学びましょう。
ふるい分け分析で粒度を決定する方法:材料の粒度分布に関するステップバイステップガイド
粒度分布のためのふるい分け分析プロセスを学びましょう。その手順、建設および材料科学における応用、そして主な限界を理解してください。
粒度測定のためのふるい分け法とは?シンプルで費用対効果の高い分析ガイド
ふるい分け分析が粒状材料の粒度分布をどのように決定するかを学びましょう。この古典的な方法の原理、手順、および限界を理解します。
ふるい分け分析はどのように実施できますか?正確な結果を得るための適切な方法を選択してください
ふるい分け分析の2つの主要な方法:手動と機械式について学びましょう。ワークフロー、制限、そして研究室のニーズに合った適切なアプローチを選択する方法を理解してください。
粒度分布の決定におけるふるい分析の重要性とは?材料の品質と性能を確保する
ふるい分析が、品質管理と材料性能予測のための粒度分布を測定するシンプルで信頼性の高い方法をどのように提供するかを学びましょう。
ふるい分け分析の実験室試験とは何ですか?粒度分布を決定するためのステップバイステップガイド
粒状材料の粒度分布を決定するための基本的な実験室試験であるふるい分け分析に必要な、重要な手順、機器、および分析方法を学びましょう。
ふるい分け分析は何に使用されますか?粒度分布測定ガイド
ふるい分け分析が建設、製薬、食品、鉱業における品質管理のために粒度分布をどのように測定するかを学びましょう。
Cvdダイヤモンドはどのように作られるのですか?ラボグロウンジェムの背後にある科学を発見する
CVDラボダイヤモンドが真空チャンバー内で原子レベルでどのように作成され、採掘されたダイヤモンドと化学的に同一の宝石が生まれるのかを学びましょう。
レーザー焼結の公差はどのくらいですか?正確なSls部品を実現するためのガイド
標準的なSLS公差(±0.3%、最小±0.3 mm)と、部品の精度に影響を与える材料の収縮や形状などの主要な要因について学びましょう。
熱分解装置の処理能力はどれくらいですか?小規模バッチから産業規模まで
熱分解装置の処理能力は、1日あたり1トン(バッチ式)から50トン超(連続式)までと幅があります。原料や設計などの主要な要因について学びましょう。
発熱体は安全ですか?信頼性と安全性の高い熱処理を確保する
最新の発熱体が、精密な温度制御、材料科学、適切なシステム設計によって、いかに安全に設計され、リスクを防止しているかを学びましょう。
バイオ炭の主な原料は何ですか?持続可能な原料の力を解き放つ
農業残渣、林業廃棄物、家畜糞尿など、バイオ炭の主要な原料と、原料の選択がその特性にどのように影響するかを発見してください。
熱分解装置の動作原理とは?廃棄物をエネルギーと資源に変える
熱分解装置がどのようにして酸素を使わずに熱を利用し、プラスチックやタイヤなどの廃棄物を貴重な合成ガス、バイオオイル、バイオ炭に分解するかを学びましょう。
バイオ炭の生産は持続可能か?真の炭素隔離と土壌の健康を解き放つ
バイオ炭の持続可能性は、原料、エネルギー使用量、適用方法によって決まります。それが環境に利益をもたらすことを保証する方法を学びましょう。
加熱エレメントの効率はどれくらいですか?エネルギー変換の真実を解き明かす
電気ヒーターエレメントは、電力を熱に変換する効率がほぼ100%ですが、真の有効性はコストと用途によって異なります。
レーザー焼結の長所と短所は何ですか?複雑で機能的な部品を実現
レーザー焼結の設計の自由度と材料強度を、機能的な試作品や最終用途部品における表面仕上げや後処理の必要性と比較して探ります。
プラスチック熱分解の最終生成物は何ですか?廃棄物を貴重な燃料と化学物質に変える
プラスチックの熱分解により、熱分解油、ガス、炭素チャーが生成されます。プラスチック廃棄物を貴重な燃料や化学原料に変える方法を学びましょう。
レトルト殺菌機の食品産業における用途は?食品の長期保存性と安全性の確保
レトルト殺菌機がいかに高温高圧を用いて最終殺菌を行い、安全で長期保存可能な缶詰やパウチ食品を可能にするかを学びましょう。
熱分解の原理とは?制御された熱分解のガイド
熱分解の核心原理を学びましょう:酸素を含まない環境で有機材料を熱分解し、バイオオイルやバイオ炭などの貴重な製品を生成します。
電着法の欠点とは?材料コーティングにおける主な制約
電着の主な欠点について掘り下げます。これには、基板の導電性要件、コーティングの均一性の問題、環境上の課題などが含まれます。
合成ダイヤモンドはどのように作られるのか?ラボグロウンダイヤモンドの背後にある科学を発見する
CVD法とHPHT法を用いてラボグロウンダイヤモンドがどのように作られるかを学びましょう。これらは採掘されたダイヤモンドと化学的に同一ですが、数十億年ではなく数週間で生成されます。
合成ダイヤモンドはラボグロウンダイヤモンドと同じですか?はい、そしてそれがあなたのダイヤモンド選びにとってなぜ重要なのかを説明します。
真実を知る:合成ダイヤモンドとラボグロウンダイヤモンドは同じものです。天然ダイヤモンドとの主な違いを発見し、情報に基づいた購入をしましょう。
熱分解に適した廃棄物とは?プラスチック、バイオマス、タイヤから価値を引き出す
プラスチック、バイオマス、タイヤなど、熱分解に最適な廃棄物材料を学び、それらを貴重な燃料、化学物質、バイオ炭に転換する方法を学びましょう。
バイオオイル熱分解の利点は何ですか?廃棄物を再生可能エネルギーと炭素貯留源に変える
バイオオイル熱分解がバイオマス廃棄物をエネルギー、廃棄物削減、炭素隔離のための再生可能なバイオオイル、合成ガス、バイオ炭に変換する方法を発見してください。
熱分解油の原料は何ですか?バイオマスとプラスチック廃棄物から燃料を生成
熱分解油の原料には、バイオマス(木材、作物)とプラスチック廃棄物が含まれます。原料の選択が油の品質とプロジェクトの目標にどのように影響するかを学びましょう。
高速熱分解の条件とは?バイオマスからバイオオイルの最大収率を達成する
高速熱分解の4つの主要な条件を学びましょう:高温、高加熱速度、短蒸気滞留時間、および無酸素環境。
ふるい分け試験は粒度分析に適用できますか?優れた性能のための材料粒度を習得する
ふるい分け試験が、品質管理、性能予測、材料の一貫性のために粒度分布をどのように決定するかを学びましょう。
ふるい分けを使用する利点は何ですか?信頼性が高く、低コストな粒子分析を実現
ふるい分け分析の主な利点、すなわち、品質管理と材料分離における単純さ、低コスト、高精度、再現性を発見してください。
ふるい振とう機の危険性とは?粉塵、騒音、データエラーによるリスクを軽減する
ふるい振とう機の危険性について学びましょう:粉塵曝露、騒音、振動、データ不正確性。安全で信頼性の高い粒子分析のための軽減戦略を発見してください。
手動ふるい振とう機の重要性とは?標準化された粒度分析を実現する
手動ふるい振とう機がどのようにして作業者のばらつきを排除し、品質管理および研究開発において信頼性の高い、再現性のある粒度分布結果をもたらすかをご覧ください。
ふるい(篩)で粒度を測定するにはどうすればよいですか?正確なふるい分け分析のためのステップバイステップガイド
粒度分布を決定するためのふるい分け分析の正確な方法を学びましょう。品質管理および研究開発において、正確で再現性のある結果を得るための重要な手順に従ってください。
ふるい振とう機をどれくらいの時間稼働させればよいですか?お使いの材料に最適なふるい分け時間を見つける
正確な粒度分布測定のために、終点決定法を用いて、お使いの材料の正しいふるい分け時間を決定する方法を学びましょう。
ふるい振とう機の危険性とは?研究室での高価なデータエラーを回避する
微粉末でのデータ不正確性から粒子摩耗まで、ふるい振とう機の主な危険性を学び、信頼性の高い粒度分析を確実に実施しましょう。
ふるい分け分析の注意点は何ですか?正確な粒度分布結果を確保するために
代表的なサンプリング、ふるいの過負荷防止、一貫した計量と振とう手順を確保するための、ふるい分け分析における重要な注意点を学びましょう。
ふるい機をどのように清掃しますか?適切なメンテナンスで正確な結果を保証する
試験用ふるいの清掃に関する正しいテクニックを学び、日常的なブラッシングから超音波によるディープクリーニングまで、精度を維持し、汚染を防ぎましょう。
最も効果的な抽出方法はどれですか?製品の目標に合ったCo2プロセスを選択する
超臨界抽出と亜臨界抽出のCO2抽出を比較:収率対品質。アイソレート、フルスペクトラム製品、またはハイブリッドアプローチのいずれに最適な方法を学びましょう。
ふるい分析は地盤工学においてなぜ重要なのでしょうか?より安全な建設のために土壌の挙動を解き明かす
ふるい分析がどのように土壌の粒度分布を決定し、基礎、道路、ダムの強度、透水性、安定性を予測するのかを学びましょう。
ふるい分け分析が重要なのはなぜですか?材料の一貫した品質と性能を保証するため
ふるい分け分析がいかにして粒度分布を測定し、材料の品質を管理し、プロセスを最適化し、製造におけるコストのかかる失敗を防ぐかを解説します。
ふるい分け分析にはどのサイズのふるいが使用されますか?メッシュ、フレーム、標準の選択ガイド
ふるいのメッシュサイズ(4.75mmから38µmまで)、フレーム径(75mmから300mm)、およびASTM、土壌、医薬品用の適切なスタックの選択方法について学びます。
ふるい分け試験機を使用する目的は何ですか?正確な粒度データを取得するため
ふるい分け試験機が、信頼性の高い品質管理と材料仕様のデータのために、一貫性があり再現性のある粒子の分離をどのように保証するかを学びましょう。
ふるいの最適な材料は何ですか?正確な結果を得るために、用途に合わせて材料を選択してください
お客様のニーズに最適なふるい材料を見つけましょう。耐久性、純度、耐薬品性に基づいて、ステンレス鋼、真鍮、青銅、ポリマーを比較します。
ふるい振とう機は何でできていますか?正確な粒子分析のための適切な材料の選択
ふるい振とう機の材料について学びましょう:ステンレス鋼、真鍮、またはハイブリッド。汚染を防ぎ、耐久性を確保するために適切なオプションを選択してください。
なぜ、直径0.1~0.5Mmのジルコニアビーズが粉砕メディアとして選ばれるのですか?Lifepo4/Cナノ粉砕マスター
LiFePO4/Cナノ粉砕における0.1~0.5mmのジルコニアビーズが標準とされる理由、すなわち高頻度の衝突と超微細分散を可能にする理由を学びましょう。
実験用真空乾燥オーブを使用する利点は何ですか?触媒の完全性とナノ構造を維持する
Pd-Au触媒に真空オーブが不可欠な理由を発見してください:焼結を防ぎ、酸化を除去し、低温で深い細孔洗浄を保証します。
微細分散タングステン酸の合成におけるマグネチックスターラーの主な機能は何ですか?せん断力の制御
マグネチックスターラーが機械的せん断力と強制対流を利用して、タングステン酸合成における粒子径を制御し、凝集を防ぐ方法を学びましょう。
Moo3/Go複合材料の調製におけるマグネチックスターラーの機能は何ですか?マスター分子均質化と核生成
MoO3/GO複合材料合成におけるマグネチックスターラーが、分子レベルの均質化と均一な不均一核生成をどのように可能にするかを学びましょう。
原材料のふるい分け分析とは?粒度データで品質を管理する
ふるい分け分析がどのように粒度分布を決定し、原材料の品質、プロセスの効率、および業界標準への準拠を保証するかを学びましょう。
ふるい分け試験を行う際に、ふるいにはどの装置が使用されますか?正確な粒度分析を実現する
信頼性の高い粒度分布結果を得るために、ふるい振とう機、認定ふるい、天びんなど、ふるい分け試験に不可欠な装置をご覧ください。
与えられた骨材のふるい分け試験におけるふるいのサイズの選定の基礎は何ですか?正確な粒度分布のために規格に従ってください
コンクリート用のASTM C33や道路用のAASHTOなどの業界標準に基づき、骨材分析用の正しいふるいサイズを選択する方法を学びましょう。
Cvdダイヤモンドの製造にはどのくらいの時間がかかりますか?成長のタイムラインを詳しく見てみましょう
CVDダイヤモンドの作成には通常2〜4週間かかります。サイズ、技術、品質がラボグロウンダイヤモンドの成長時間にどのように影響するかを学びましょう。
リチウム電池をテストする方法はありますか?電圧と真の健全性を理解する
マルチメーターを使ってリチウム電池の電圧をテストする方法を学び、真の電池の健全性と性能を測るための重要な容量テストを発見しましょう。
Xrfに必要なサンプルサイズは?適切な前処理で分析を最適化しましょう
材料の種類に応じたXRF分析に適切なサンプルサイズを学びましょう。固体、粉末、液体の適切な前処理技術により、正確な結果を保証します。
Giaはラボグロウンダイヤモンドをどのように識別するのか?ダイヤモンドの起源検証の科学を解き明かす
GIAが高度な分光分析、蛍光分析、および独自の成長パターンをどのように利用して、ラボグロウンダイヤモンドを明確に識別し、透明性を確保しているかをご覧ください。
宝石商はラボグロウン・ダイヤモンドを見分けることができるか?ダイヤモンドの産地を特定する真実
宝石商がラボグロウンと天然のダイヤモンドを視覚的に区別できない理由を発見し、正確な特定に使用される科学的手法を学びましょう。
ラボグロウンダイヤモンドはどのように作られる?HphtとCvdの製造プロセスを解説
HPHT法とCVD法を用いてラボグロウンダイヤモンドがどのように作られるか、そして採掘された石と同一の特性を持つ本物のダイヤモンドが数週間でどのように生成されるかを学びましょう。
粉末X線回折(Xrd)分析には、どのくらいの量のサンプルが必要ですか?マテリアル分析を最適化しましょう
標準ホルダー用の100~500mgからマイクログラム技術まで、粉末XRDに最適なサンプル量について学び、正確な結果を保証します。
Ftirによるサンプル分析はどのように行われますか?信頼できる結果を得るためのステップバイステップガイド
背景スキャン、サンプル調製、データ取得の3段階のFTIR分析プロセスを学びましょう。正確な分子同定のために、ATR、KBrペレット、ソルトプレートを習得します。
熱間静水圧プレス(Hip)の時間はどれくらいですか?サイクル時間を決定する変数を解き明かす
熱間静水圧プレス(HIP)のサイクル時間は数時間から1日以上に及びます。材料、部品のサイズ、および目標密度が所要時間をどのように決定するかを学びましょう。
粒度測定に最適な技術は?材料に合った適切な方法を見つけましょう
ふるい分け、レーザー回折、DLS、画像解析を比較。サンプルのサイズ、種類、分析目標に最適な粒度測定技術を見つけましょう。
Cvdダイヤモンド装置の費用はいくらですか?ラボから生産までの投資の内訳
CVDダイヤモンド装置の費用は、研究用ユニットの5万ドルから、産業用システムでは100万ドル以上に及びます。リアクターの価格と総投資額について解説します。
バイオマス発電は高価ですか?エネルギーニーズに対する真のコストと価値を解明する
原料、設備投資、運用費用を含むバイオマス発電の真のコストと、廃棄物管理および信頼性の高いエネルギーにおけるその独自の価値を探ります。
Xrfの欠点は何ですか?正確な元素分析におけるその限界を理解する
XRF分析の主な限界、特に軽元素の検出能力の低さ、表面感度、および精度に影響を与えるサンプル調製におけるトレードオフについて探ります。
なぜ圧縮すると温度が上昇するのか?熱と圧力の物理学を解き明かす
気体を圧縮すると温度が上昇する理由を学びましょう。分子メカニズム、理想気体の法則、そしてエンジンやHVACなどの実世界での応用を理解します。
油圧が高すぎるとどうなりますか?壊滅的なシステム障害とダウンタイムを防ぐ
過剰な油圧の危険性:部品の破裂、エネルギーの浪費、摩耗の加速について学びます。安全で効率的な操作のための原因と解決策を発見してください。
圧縮成形が使用される製品は何ですか?大型で耐久性のある部品の製造
自動車、航空宇宙、電気産業における圧縮成形の用途をご覧ください。ボディパネル、エンクロージャ、食器などの高強度部品に最適です。
高速熱分解の利点は何ですか?効率的で分散型のバイオマス変換を実現
分散型バイオオイル生産、高い変換効率、バイオ炭のような多用途の副産物など、高速熱分解の主要な利点を発見してください。
ラボグロウンダイヤモンドとCvdダイヤモンドの違いは何ですか?2つの主要な生成方法を理解する
CVDはラボグロウンダイヤモンドを生成する方法の1つです。CVDとHPHTのプロセスの違いと、それらがダイヤモンド選びにどのように影響するかを学びましょう。
ダイヤモンドを検査する機械はありますか?現代のダイヤモンド鑑定技術ガイド
シンプルな熱伝導テスターから、ラボグロウンダイヤモンドを識別するための高度なラボ機器まで、ダイヤモンドの検査に使用される機械についてご紹介します。