知識 リソース

リソース

業界を問わず、一般的な技術ガイドラインや基礎知識を幅広く掲載しています。

すべての質問

KbrのIrスペクトルにおけるピークは何ですか?一般的なFtirのアーティファクトに関する真実を解き明かす

KBrはIRに対して透明ですが、湿気の混入がピークを引き起こします。正確なFTIR分析のために、水によるアーティファクトを特定し除去する方法を学びましょう。

Kbr Ftirの欠点は何ですか?データ品質に影響を与える主な制限事項

湿気への感受性、再現性の低さ、サンプルの反応性など、KBr FTIRの主な欠点を探り、正確な分光分析結果を確実に得ましょう。

FtirシステムでKbrが使用されるのはなぜですか?正確な中赤外分光分析の鍵

KBrがFTIRの光束分割器およびサンプルホルダーの標準材料である理由を発見してください。中赤外領域での光学的透明性と正確なサンプル測定を保証します。

なぜKbrとNaclがIr分光法で使用されるのですか?クリアで正確なサンプル分析を実現

KBrとNaClがIR分光法に不可欠な理由をご覧ください。それらのIR透過性と展延性により、干渉なしに正確なサンプル分析が可能になります。

FtirにKbrが使用される理由とは?クリアで正確な固体サンプル分析を実現

KBrペレットがFTIR分析の標準である理由を学び、透明なサンプル調製と干渉のない信頼性の高いスペクトルデータ取得を可能にします。

Ftirの代替手段は何ですか?ラボに最適な分析技術の選択

ラマン分光法、NMR、XRD、UV-Vis分光法などのFTIRの代替手段を探ります。それぞれの長所と、特定の分析ニーズに最適な技術を選択する方法を学びましょう。

IrにおけるKbrの範囲は?4000-400 Cm⁻¹の中赤外分光法ガイド

KBrのIR範囲は4000-400 cm⁻¹で、中赤外分光法に最適です。その利点、限界、正確なサンプル分析のためのベストプラクティスを学びましょう。

赤外分光法でKbrのみが使用されるのはなぜか?あなたのサンプルに最適な材料に関する真実

KBrがIR分光法で一般的に使用される理由、その限界、そして正確な結果を得るためにNaCl、AgCl、またはATR結晶などの代替品を使用すべき場合について解説します。

なぜIrにKbrが使われるのか?正確な固体試料分析のための透明ペレットの作成

KBrがIR分光法に理想的な理由を学びましょう:IR光に透明で、透明なペレットを形成し、正確な試料分析のためにクリーンなバックグラウンドを提供します。

臭化カリウムは何でできていますか?研究室と獣医療を支えるイオン性化合物の力を発見しよう

臭化カリウム(KBr)がカリウムと臭素からイオン結合によってどのように形成されるかを学び、IR分光法や獣医学におけるその主な用途を探ります。

Atr-Ftirの限界とは?表面分析と接触の課題を理解する

ATR-FTIRの主な限界(表面のみの分析、接触要件、スペクトルアーティファクトなど)を探り、正確な材料識別のために理解を深めます。

Ir分光法におけるKbrの用途とは?クリアなスペクトルを得るためのペレット法の習得

KBrペレットが、固体試料の正確なIR分析を可能にする仕組み、すなわち、クリアな分光結果を得るための透明でIRに不活性なマトリックスとして機能する方法を学びましょう。

Kbr法とは?固体材料のFtirサンプル調製ガイド

FTIR分光法におけるKBrペレット法の仕組み、ステップバイステップの手順、利点、正確な結果を得るために避けるべき一般的な落とし穴について学びましょう。

Ir分光法でKbrを使用する理由とは?固体のサンプル分析で鮮明で高品質な結果を得る

KBrがIR分光ペレットにとって理想的なマトリックスである理由を学びましょう。KBrは透明性、適切な希釈性、そして正確な結果を得るための干渉の少なさを提供します。

Ftirを使用する際に取るべき予防措置は何ですか?機器を保護し、正確なデータを確保する

デリケートな光学部品を保護し、正確なサンプル調製を保証し、データの完全性を維持するための必須のFTIRの予防措置について学びましょう。信頼できる結果を得るために、よくある落とし穴を避けましょう。

なぜKbrはIrサンプル調製に適しているのでしょうか?クリアで妨げのない赤外分光法の鍵

KBrがIR透明性によりサンプル調製に理想的な理由を発見してください。正確な分光分析結果を得るための利点、限界、およびベストプラクティスを学びましょう。

Kbrの機能とは?固体Ftir分析における高品質な分析のための重要なツール

KBrペレットがどのようにして、光散乱を最小限に抑え、透明なディスクを作成することで、正確なFTIR分光法を可能にし、固体のサンプル分析を明確にするかをご覧ください。

Kbrがペレット作成に使用されるのはなぜですか?固形サンプルの高品質なFtir分析を実現する

KBrがFTIRペレットの標準である理由を発見してください:そのIR透過性、展延性、そして鮮明なスペクトルを得るための均一なサンプルマトリックスを作成する能力。

臭化カリウムは環境に有害ですか?水質への隠れたリスクを明らかにする

臭化カリウムの環境への影響は、その臭化物イオンに由来します。臭化物イオンは消毒剤と反応し、飲料水中に有害な副生成物を形成します。

NaclまたはKbrプレートを使用してFtir測定を行う際、なぜ水の汚染を避けるべきなのですか?機器とデータ整合性を保護しましょう

水がNaCl/KBr FTIRプレートを損傷し、曇りやスペクトル干渉を引き起こす理由を学び、信頼性の高い測定のためのベストプラクティスを発見してください。

Ir測定用のペレット作成にKbrが使用されるのはなぜですか?鮮明で正確なスペクトルを得るために

IR分光法ペレットの標準物質としてKBrが選ばれる理由をご覧ください。その透明性、不活性、およびペレット形成能力が、正確なサンプル分析を保証します。

Ir測定のためにKbrを乾燥させる温度は何度ですか?水分を含まない高品質なスペクトルを得るための鍵

IR分光法に最適なKBrの乾燥プロトコル(105~110℃)を学び、水の干渉を除去して正確なサンプル分析を保証する方法。

Kbrの危険性は何ですか?研究室の結果を台無しにする手順の誤りを避ける

研究室におけるKBrの本当の危険性について学びましょう。軽度の化学的刺激から、IR分光分析データの完全性を損なう手順上の落とし穴まで。

Kbrは危険ですか?臭化カリウムのリスクと安全な取り扱いを理解する

KBrの皮膚刺激や臭素中毒などの危険性、および実験室での臭化カリウム取り扱いのための必須の安全プロトコルについて学びましょう。

Kbrの危険性とは?健康リスクを回避し、Ftirデータを保護する

KBrの毒性、吸湿性リスクを含む健康上および手順上の危険性、そして正確なFTIR分光分析結果を確保する方法について学びましょう。

臭化カリウムは人体に安全ですか?ブロム中毒のリスクと現代の代替品

臭化カリウムが慢性毒性や生体内蓄積により、深刻な神経学的副作用を引き起こし、人体に安全でない理由を学びましょう。

アルミニウムの熱処理は強度を向上させますか?時効硬化で最大限の強度を引き出す

6061-T6や7075-T6などのアルミニウム合金の熱処理は、時効硬化によって強度を劇的に向上させます。その仕組みと恩恵を受ける合金について学びましょう。

なぜ鋳造品には熱処理が必要なのでしょうか?生鋳造品を信頼性の高い部品に変える

熱処理がどのようにして内部応力や粗大な結晶粒構造といった鋳造欠陥を修正し、強度、靭性、寸法安定性を向上させるかをご覧ください。

鋳造アルミニウムは熱処理できますか?要求の厳しい用途向けの特定の合金の強化

どの鋳造アルミニウム合金が熱処理可能か、そしてT6調質プロセスが要求の厳しい用途向けに強度と硬度を劇的に向上させる方法を学びましょう。

アルミニウムの熱処理の目的とは?高強度と設計された性能を引き出す

6061や7075などのアルミニウム合金が、制御された析出硬化プロセスを通じて、強度、硬度、靭性をどのように向上させるかを学びましょう。

アルミニウムの標準的な熱処理とは?時効硬化のガイド

アルミニウム合金の標準的な熱処理である時効硬化について学びましょう。3つの主要な段階と、プロジェクトに適した調質を選ぶ方法を理解してください。

アルミニウム合金鋳造の3つの基本的な方法は?砂型鋳造、ダイカスト、永久鋳型鋳造を解説

アルミニウム合金における砂型鋳造、ダイカスト、永久鋳型鋳造を比較します。コスト、生産量、品質のトレードオフを理解し、プロジェクトに最適な方法を選択しましょう。

アルミニウムの熱処理温度は何度ですか?合金の正確な材料特性を実現する

アルミニウムの熱処理における正確な温度範囲(120°Cから575°Cまで)を発見し、特定の合金に最適な強度、硬度、または延性を実現しましょう。

アルミニウムの熱処理の最良の方法は何ですか?強度、柔らかさ、または靭性のうち、どの特性を優先しますか?

最適なアルミニウム熱処理を発見しましょう:強度向上のための時効硬化、または成形性のための焼鈍。合金と目的に合ったプロセスを選択してください。

鋳物の熱処理プロセスとは?部品を最高の性能に変換する

焼なまし、焼ならし、焼入れなどの熱処理プロセスが、強度、硬度、靭性といった鋳物の特性をどのように向上させるかをご覧ください。

アルミニウム熱処理の標準とは何ですか?最適な特性のための調質記号システムを習得する

強度、延性、耐食性を正確に指定するために、アルミニウム協会の調質記号システム(例:T4、T6、T7)について学びましょう。

熱間静水圧プレス(Hip)は焼結と同じですか?優れた密度と性能を解き放つ

HIPと焼結の主な違いを発見しましょう。熱と圧力がどのように組み合わさって、ほぼ100%の密度を達成し、内部欠陥をなくすのか。

アディティブマニュファクチャリングの将来のトレンドとは?プロトタイピングからインテリジェントで自動化された生産へ

AI駆動設計、先進材料、自動化されたワークフローが、本格的な生産に向けたアディティブマニュファクチャリングの未来をどのように形作るかを探ります。

アディティブマニュファクチャリングの最新技術とは?プロトタイピングから量産まで

金属バインダージェッティング、CLIP、AI統合などの最新のAM技術を探求します。これらの技術がどのようにして高性能部品のより速く、より信頼性の高い生産を可能にするかを学びましょう。

金属粉末を混合する際の注意点は何ですか?研究室の安全性と品質を確保する

爆発を防ぎ、作業者の安全を確保し、均質で汚染のない混合物を実現するために、金属粉末の混合における重要な注意事項を学びましょう。

アディティブ・マニュファクチャリングの危険性とは何ですか?化学的、物理的、機械的なリスクを軽減する

粉末やヒュームによる化学物質への曝露、高エネルギーレーザーのリスク、機械的な危険性など、アディティブ・マニュファクチャリングの主な危険性について学びましょう。

アディティブマニュファクチャリングはより安価ですか?3Dプリンティングが従来の製造方法よりもコストを削減できる場合を発見してください

プロトタイプ、複雑な部品、少量生産において、アディティブマニュファクチャリングが従来の製造方法よりも安価になる場合を学びましょう。数量と複雑さでコストを比較します。

最も安価な積層造形プロセスは何ですか?Fdmで予算内で3Dプリントを始めましょう

低コストのハードウェアから安価なフィラメント材料まで、溶融堆積モデリング(FDM)が最も手頃な3Dプリントプロセスである理由をご覧ください。

アディティブ・マニュファクチャリングの最も適用されている分野はどれですか?プロトタイピングから高付加価値生産まで

航空宇宙、医療、自動車産業向けに、アディティブ・マニュファクチャリングの最も価値の高い用途が、機能的な最終使用部品の製造分野でどのように活用されているかをご覧ください。

積層造形は産業界でどのように利用されていますか?複雑で軽量なカスタム部品を実現

積層造形(3Dプリンティング)が航空宇宙、ヘルスケア、自動車産業で、軽量部品、カスタムインプラント、迅速なプロトタイピングにどのように利用されているかをご覧ください。

アディティブ・マニュファクチャリングではどのような種類の材料が使用できますか?ポリマー、金属、複合材料を探る

PLAのような一般的なプラスチックから、高度な金属や複合材料まで、あらゆる種類の3Dプリンティング材料を発見し、プロジェクトに最適な材料を選ぶ方法を学びましょう。

アディティブ・マニュファクチャリング(Am)のプロセスにおけるステップとは?デジタルから物理へのワークフロー完全ガイド

3D CAD設計から後処理まで、アディティブ・マニュファクチャリングの重要なステップを学び、部品製造を成功させ、一般的な落とし穴を回避しましょう。

黒鉛の温度依存性とは?高温使用における強度と酸化のバランス

黒鉛の強度が温度とともにどのように増加するか、しかし酸化によってどのように制限されるかを学びます。真空、不活性ガス、空気中での応用に向けた重要な洞察。

グラファイトは熱の影響を受けますか?高温下での驚くべき強度と安定性を発見

昇華や熱による強度向上など、グラファイトのユニークな特性がどのように高温用途に理想的であるかを学びましょう。

黒鉛は収縮しますか?寸法安定性における温度と放射線の重要な役割

黒鉛は主に原子炉内の高速中性子照射により収縮します。熱による変化と照射による変化、および材料選択について学びましょう。

グラファイトは熱に耐えられますか?不活性環境下で3,600°Cという極限の可能性を解き放つ

グラファイトは不活性雰囲気下では3,600°Cで昇華しますが、空気中では450°Cを超えると酸化します。研究室でその耐熱性を最大限に引き出す方法を学びましょう。

なぜグラファイトの熱伝導率はこれほど高いのでしょうか?そのユニークな構造で優れた熱伝導を実現

グラファイトの層状原子構造が、いかに多くの金属を凌駕する卓越した熱伝導率を可能にするかをご覧ください。その科学と応用を学びましょう。

グラファイトのグレードとは何ですか?産業用途に最適な材料を見つける

バッテリー、耐火物、電子機器における性能ニーズに合わせて、グラファイトグレードが純度と形態によってどのように分類されるかを学びましょう。

黒鉛の導電性は?その高い電気的・熱的特性を理解する

原子構造から純度やグレードに至るまで、黒鉛の特異な導電性を探ります。高温用途で主要材料である理由を学びましょう。

最も一般的なグラファイトの種類は?天然無定形 Vs. 高性能合成

天然無定形、鱗状、脈状、合成グラファイトの違いを発見してください。EVバッテリーから高温炉まで、あなたの用途に最適な種類を学びましょう。

黒鉛は航空宇宙分野で使用されていますか?炭素繊維複合材の力を発見する

高強度の黒鉛繊維が、現代の航空機や宇宙船における優れた強度対重量比を実現する先進的な複合材をどのように作り出しているかを学びましょう。

ダイヤモンドはグラファイトよりも優れた熱伝導体ですか?熱伝導率の原子レベルの秘密を解き明かす

ダイヤモンド独自の原子構造が、いかにグラファイトと比較してはるかに優れた熱伝導体であるか、そして高性能ヒートシンクへの応用について解説します。

なぜ黒鉛は高い熱伝導率を持つのか?そのユニークな構造で優れた熱管理を実現

黒鉛の層状原子構造が、いかにして優れた熱伝導性を可能にし、高温用途で金属を凌駕するのかを発見してください。

グラファイトの熱伝導率とは?その幅広い範囲と用途のガイド

グラファイトの熱伝導率は25~470 W/mKの範囲で、特殊な形態では1,950 W/mKを超えるものもあります。ニーズに合った適切なグレードの選び方をご覧ください。

黒鉛の機械的特性とは?剛性の活用と脆性の管理

黒鉛の機械的特性を探る:卓越した剛性、寸法安定性、高強度と、産業用途における固有の脆性とのバランス。

天然グラファイトと合成グラファイト、どちらが優れているか?用途に合わせた適切な材料の選び方

天然グラファイトと合成グラファイトを比較し、純度、コスト、耐久性、性能に基づいて、特定のニーズに最適な材料を選択します。

押出成形グラファイトと等方性グラファイトの違いは何ですか?用途に合った適切な材料を選びましょう

製造方法、結晶構造から性能、コスト、最適な用途に至るまで、押出成形グラファイトと等方性グラファイトの主な違いを学びましょう。

黒鉛材料の用途は何ですか?産業プロセスにおける極度の熱と精度の活用

高温炉、焼結、先進製造における黒鉛の主な用途を探ります。その熱安定性、限界、および理想的な用途について学びましょう。

押出成形グラファイトは何に使用されますか?産業プロセスにおける費用対効果の高い導電性

押出成形グラファイトの主な用途を学びましょう。その方向性のある導電性と費用対効果を活用し、電気アーク炉電極から発熱体まで。

グラファイトの3つのタイプとは?工業用天然グラファイトと合成グラファイトのガイド

非晶質、鱗片状、脈状グラファイト、そして合成グラファイトについて学びましょう。エネルギー貯蔵や製造における純度、コスト、用途を比較します。

押出黒鉛とは?コスト効率の高いソリューションのための異方性特性の理解

押出黒鉛は、発熱体、電極、構造部品に理想的な方向性特性を持つ合成黒鉛です。その特性について学びましょう。

グラファイトの長所と短所は何ですか?高温性能の習得 Vs. 汚染リスク

グラファイトの長所と短所を探る:極度の耐熱性&エネルギー効率 vs. 研究室用途における粒子脱落&アウトガスリスク。

黒鉛(グラファイト)を使用する上での欠点は何ですか?ハイテク用途における主な制限事項

黒鉛の主な欠点を探る:脆性、450℃での酸化、粉塵による汚染、異方性特性。黒鉛を避けるべき状況を学びましょう。

等方性黒鉛の密度はどのくらいですか?要求の厳しい用途で優れた性能を発揮

等方性黒鉛の高密度(1.75-1.90 g/cm³)が、なぜ先進的なエンジニアリングにおいて卓越した強度、導電性、加工性をもたらすのかをご覧ください。

合成黒鉛の密度は?1.5~2.26 G/Cm³の範囲を理解する

合成黒鉛の密度が1.5~1.95 g/cm³(かさ密度)から2.26 g/cm³(理論密度)まで変動する理由と、それが研究室のニーズに対する性能にどう影響するかを学びましょう。

グラファイトの密度は?性能と品質の重要な指標

グラファイトの密度は1.5~2.26 g/cm³の範囲です。密度が強度、熱伝導率にどのように影響するか、また用途に合った適切なグレードの選び方について学びましょう。

グラファイトの耐熱性は?研究室でその高温の可能性を解き放つ

グラファイトの耐熱性は環境に依存します。不活性ガス中では3000°Cまで、真空中では2200°Cまでですが、酸化のため空気中では約450°Cにすぎません。

黒鉛は高温に耐えられますか?制御された雰囲気下での性能最大化

黒鉛は不活性ガスまたは真空環境下では華氏6,500度(摂氏3,600度)までの極度の温度に耐えられますが、空気中では華氏932度(摂氏500度)を超えると酸化します。重要な要因を学びましょう。

高温でのグラファイトはどうなりますか?その耐熱性を解き放つ

グラファイトが高温でどのように振る舞うかを発見してください:3652°Cで昇華し、強度が増し、熱衝撃に耐えますが、制御された雰囲気が必要です。

黒鉛の欠点は何ですか?高温用途における脆性と反応性の管理

黒鉛の主な限界(脆性、酸化、化学的反応性)を探ります。ラボや産業プロセスにおいて、いつ黒鉛を使用し、いつ代替品を選ぶべきかを学びましょう。

潤滑剤としてのグラファイトの工業用途とは?極限の熱と圧力に対するソリューションガイド

オイルが機能しない極限の熱、重荷重、導電性用途でグラファイト潤滑剤がいかに優れているかをご覧ください。

グラファイトの工業用途とは?冶金から半導体まで

耐熱性と導電性を活かしたグラファイトの主要な工業用途を、冶金、EDM、半導体、原子力分野で探ります。

黒鉛の特性とは?高温強度と導電性を解き放つ

黒鉛のユニークな特性を探る:高い熱伝導率・電気伝導率、熱による強度増加、そして産業用途におけるその重要な役割。

等方性黒鉛の特性とは?均一な強度と熱性能のためのガイド

等方性黒鉛の主な特性を探る:均一な構造、高い耐熱衝撃性、優れた機械加工性、そして過酷な用途向けの高純度。

アイソタクチック圧力とは何ですか?構造と力の決定的な違いを解き明かす

アイソタクチック(ポリマー構造)と静水圧(均一な力)の混同を明確にします。材料科学と工学に不可欠です。

熱間等方圧プレスシステムの構成要素とは?コアHip装置ガイド

熱間等方圧プレス(HIP)システムの5つの主要コンポーネントを探る:容器、炉、ガス処理、制御、および補助システム。

粉末冶金の欠点は何ですか?強度とサイズの主な制限

粉末冶金の主な欠点を探ります。これには、部品サイズの制限、多孔性による強度の低下、少量生産における高い金型コストなどが含まれます。

粉末冶金プロセスの工程は何ですか?効率的でニアネットシェイプ製造へのガイド

粉末冶金の4つの主要なステップ(粉末の調製、混合、成形、焼結)を学びましょう。PMがいかにして廃棄物を最小限に抑え、精密で複雑な部品を製造するかを発見してください。

粉末冶金プロセスの利点は何ですか?費用対効果が高く、高精度な製造を実現

粉末冶金の主な利点を発見してください:高い材料効率、複雑な部品の製造、大量生産におけるコスト削減。

代替のプレスおよび焼結技術とは?従来の粉末冶金の限界を克服する

HIP、SPS、MIMなどの高度な粉末冶金技術を探求し、優れた密度、複雑な形状、強化された機械的特性を実現します。

粉末冶金の長所と短所は何ですか?大量生産における効率を最大化する

粉末冶金の長所と短所を探ります。高い材料効率、大量生産におけるコスト削減、部品強度と複雑さの限界など。

セラミックスにおけるHipプロセスとは何ですか?完全密度と優れた機械的特性の達成

HIP(熱間静水圧プレス)がいかにしてセラミックスの気孔率をなくし、100%の密度と強化された強度、信頼性、性能をもたらすかを発見してください。

鋳造におけるHipプロセスとは?高密度で高性能な金属部品を実現する

熱間等方圧加圧(HIP)が、どのようにして鋳造内部欠陥を除去し、疲労強度を向上させ、重要な部品の信頼性を高めるかをご覧ください。

金属のHip処理とは?重要な部品に完璧な密度を実現する

熱間等方圧プレス(HIP)がどのようにして金属の内部気孔を除去し、鋳造部品や3Dプリント部品の疲労寿命、延性、信頼性を向上させるかをご覧ください。

粉末冶金の主な欠点は何ですか?サイズ、強度、複雑さの制限

粉末冶金の主な欠点、具体的には部品サイズの限界、多孔性による強度の低下、幾何学的複雑さの制約について探ります。

Hipプロセスは何をしますか?優れた材料性能のために多孔性を排除します

熱間静水圧プレス(HIP)が、熱と圧力を用いて内部の空隙をなくし、鋳物や3Dプリント品の密度を高め、機械的特性を向上させる方法をご覧ください。

粉末冶金部品の利点は何ですか?費用対効果の高い高性能部品を実現

粉末冶金の主な利点を発見してください:大量生産、最小限の廃棄物、複雑な部品のための独自の材料特性。

Hip熱処理のプロセスとは何ですか?気孔率をなくし、部品の信頼性を高める

熱間静水圧プレス(HIP)が、高温と静水圧を用いて内部欠陥を除去し、完全に高密度で高性能な部品をどのように作り出すかを学びましょう。

粉末冶金における熱間静水圧プレス(Hip)とは何ですか?優れた性能を実現するための完全な高密度化

熱間静水圧プレス(HIP)がいかにして金属部品の気孔率をなくし、優れた強度と信頼性を持つ完全高密度部品を生み出すかを学びましょう。

Hip(熱間等方圧プレス)は何に使用されますか?最大密度と信頼性の実現

熱間等方圧プレス(HIP)が金属やセラミックスの内部欠陥をどのように除去し、航空宇宙、医療、3Dプリント部品の強度を高めるかをご覧ください。

粉末冶金におけるHipプロセスとは何ですか?完全密度と優れた材料特性の達成

熱間静水圧プレス(HIP)がいかにして金属粉末の気孔率を排除し、優れた強度と疲労耐性を持つ完全密度の部品を生成するかを発見してください。

熱間等方圧接(Hip)の歴史とは?高性能化のための深掘り

高温高圧を用いて材料の内部空隙を除去し、材料特性を向上させるプロセスである熱間等方圧接(HIP)の歴史と原理を探ります。

Ftir分析を行う際に取るべき予防措置は何ですか?信頼性の高い分光結果を得るための必須ステップ

機器の保護、正確なサンプル分析の保証、および信頼性の高いデータを取得するための大気干渉の管理に関する重要なFTIRの注意事項を学びましょう。

Ftirは定量分析に使用できますか?はい、濃度を正確に測定する方法をご紹介します。

FTIR分光法が、ベール・ランバートの法則、検量線、および複雑な混合物のケモメトリクスを使用して、いかに正確な定量分析を可能にするかを学びましょう。

Xrfにはどのくらいのサンプルが必要ですか?正確な結果を得るためには量ではなく品質に焦点を当てる

XRFサンプル調製の品質(厚さ、平坦度、均質性)が質量よりも重要である理由を学びましょう。金属、粉末、融解ビーズに適切な方法を選択してください。