知識 リソース

リソース

業界を問わず、一般的な技術ガイドラインや基礎知識を幅広く掲載しています。

すべての質問

ろ過と遠心分離の違いは何ですか?サイズ分離と密度分離のガイド

ラボのニーズに最適な分離方法を選択するために、ろ過(サイズベース)と遠心分離(密度ベース)の主な違いを学びましょう。

排水処理用メンブレンフィルタープレスとは?より乾燥した汚泥と低い処分コストを実現

メンブレンフィルタープレスが、標準的なプレス機よりも効率的に汚泥を脱水し、処分コストとサイクル時間を削減するために、機械的な絞りサイクルをどのように利用するかを学びましょう。

フィルタープレス性能を向上させるにはどうすればよいですか?スラリー、サイクル、メンテナンスを最適化して最高の効率を実現する

スラリー特性、薬品処理、運転サイクル、機器のメンテナンスを最適化することで、フィルタープレスの性能を向上させ、より良い結果を得る方法を学びましょう。

フィルタープレスとは何ですか?また、どのような用途に使用されますか?高効率な液固分離を習得する

フィルタープレスがスラッジの脱水、液体の清澄化などにどのように機能するかをご覧ください。廃水、鉱業、食品加工におけるその用途を学びましょう。

フィルタープレスの構成とは?凹型チャンバーとメンブレンの違いを解説

凹型チャンバー式とメンブレン式フィルタープレスの構成を比較します。それぞれの仕組み、長所と短所、そして脱水ニーズに合った適切な選択方法を学びましょう。

プレート&フレームフィルタープレスの種類とは?適切な脱水ソリューションの選択

凹型チャンバー式とメンブレン式フィルタープレスを比較。どちらの技術があなたのラボやプロセスに必要なケーキの乾燥度と効率を提供するかを学びましょう。

フィルタープレスはどのように選べばよいですか?最適な結果を得るために、適切な技術をスラッジに合わせる

スラッジの特性分析、パイロットテスト、膜式と凹型プレートなどの技術オプションのバランスを取りながら、適切なフィルタープレスを選択する方法を学びましょう。

遠心分離機の欠点は何ですか?高コストと性能の限界

遠心分離機の主な欠点を探ります。これには、高い設備投資および維持費、微細粒子の分離が不完全であること、せん断に弱い製品への損傷の可能性などが含まれます。

遠心ろ過の欠点は何ですか?高コスト、メンテナンス、製品損傷のリスク

遠心ろ過の主な欠点を探ります。これには、高い設備投資コスト、メンテナンスの要求、せん断による損傷、微細粒子に対する非効率性が含まれます。

遠心分離機の利点と欠点は何ですか?速度とコストおよびリスクの比較

遠心分離機の長所と短所を探る:高速分離と機器コスト、サンプル損傷のリスク、および研究室に求められる厳格な安全要件。

フィルタープレス効率とは?ケーキの乾燥度、ろ液の清澄度、処理速度のバランス

フィルタープレスの効率は、ケーキの乾燥度、ろ液の清澄度、サイクルタイムのバランスです。お客様固有の目的に合わせて最適化する方法を学びましょう。

ベルトプレス脱水機の利点は何ですか?低運用コストで大量脱水を実現

連続運転、低エネルギー消費、高い信頼性など、汚泥脱水におけるベルトプレス脱水機の主な利点をご覧ください。

プレートアンドフレームフィルタープレス(板枠式フィルタープレス)の欠点は何ですか?人件費の高さとバッチ処理によるダウンタイム

プレートアンドフレームフィルタープレスの主な欠点、すなわち運用の非効率性、高い人件費、サイクル間の大きなダウンタイムについて解説します。

重力によって周囲の液体から固体を分離する最も効率的な方法は何ですか?凝集・清澄化で最適化しましょう。

凝集、フロック形成、清澄機/シックナーの選択など、産業用固体の最も効率的な重力分離方法を発見し、最適な結果を得ましょう。

最も効率的な分離技術は何ですか?混合物に最適な方法を選択してください

混合物の特性、目的の純度、スケールに基づいて、最も効率的な分離技術を選択する方法を発見してください。蒸留、ろ過、クロマトグラフィーなどを比較します。

固体から液体を除去するのに最適な方法は?ろ過、デカンテーション、蒸発、遠心分離のガイド

最適な結果を得るために、混合物の特性に基づいて最適な固液分離法(ろ過、デカンテーション、蒸発、遠心分離)の選択方法を学びましょう。

遠心分離とろ過では、使用する力という点でどのような違いがありますか?適切な分離方法を選択するためのガイド

遠心分離とろ過の主な違いを学びましょう。遠心力は密度によって分離し、ろ過は圧力を使用して粒子のサイズによって分離します。

フィルタープレス(濾過機)の長所と短所は何ですか?優れた固液分離を実現する

フィルタープレスの長所と短所を探りましょう。高いケーキ乾燥度、ろ液の清澄度、および産業用途におけるバッチプロセスの制限などが含まれます。

遠心分離機の使用の利点は何ですか?迅速で高解像度のサンプル分離を実現

遠心分離機の主な利点を発見してください。比類のない速度、高解像度の分離、そして臨床、研究、産業ラボ向けのサンプルの完全性です。

ろ過と比較した場合の遠心分離の利点は何ですか?困難なサンプルにも容易に対応

微粒子、高固形分サンプル、デリケートな材料に対して、ろ過よりも遠心分離が優れている場合を発見してください。適切な分離選択を行ってください。

遠心フィルターの利点は何ですか?研究室での迅速かつ穏やかなサンプル調製を実現

遠心フィルターの主な利点を発見してください:タンパク質や核酸の迅速な濃縮、高いサンプル回収率、効率的なバッファー交換。

遠心分離とろ過、どちらが良いですか?研究室に最適な分離方法を選ぶためのガイド

遠心分離とろ過:密度とサイズに基づく分離の主な違いを学び、研究室のサンプルと目標に最適な方法を選択しましょう。

フィルタープレスを使用する利点は何ですか?最大限の脱水と優れたろ液の清澄度を実現

フィルタープレスの中核的な利点を発見してください。極めて乾燥した固形ケーキ、清澄なろ液、そしてラボ用から産業用までの多用途な操作が可能です。

遠心分離機の産業用途とは?食品、医薬品、廃棄物管理における分離の力

工業用遠心分離機が食品加工、医薬品、廃棄物管理において、どのように材料を分離し、精製と効率化に貢献しているかを探ります。

日常生活における遠心分離機の用途とは?乳製品から洗剤まで、分離がいかに世界を動かしているかをご覧ください

牛乳からクリームを分離することから、洗濯機の脱水サイクルまで、遠心分離機が日常生活でどのように機能するかを発見してください。この不可欠なツールの背後にある科学を学びましょう。

遠心分離機の種類と用途は何ですか?分離ニーズに合った適切なツールを見つける

低速、高速、超遠心分離機について探求します。RCF、ローターの種類、および用途が、あなたの研究室に最適な遠心分離機をどのように決定するかを学びましょう。

石油産業におけるフィルタープレスの用途は何ですか?廃棄スラッジを回収収益に変える

フィルタープレスがどのように油性スラッジを脱水し、貴重な油を回収し、石油・ガス産業における廃棄コストを削減して収益性を高めるかをご覧ください。

遠心分離機は溶液に何をしますか?高速遠心力で成分を分離する

遠心分離機が遠心力を使って密度とサイズによって溶液を分離し、分析用の明確なペレットと上清をどのように作成するかを学びましょう。

遠心分離機はどのように粒子を分離するのですか?高速分離の科学をマスターする

遠心分離機が遠心力を使って密度、サイズ、形状によって粒子を分離する方法を学びましょう。分画遠心分離や等密度遠心分離などの主要な技術を発見してください。

遠心分離機はどのように機能し、どのような目的で使用されますか?高速サンプル分離の力を解き放つ

遠心分離機が遠心力を利用して密度によって混合物を分離する方法を学びましょう。臨床、生物学、産業用途に不可欠です。

遠心分離プロセスはどのように機能しますか?研究室の迅速な分離を実現

遠心分離機が高速回転と遠心力を使用して、血液サンプルから工業材料まで、混合物を効率的かつ効果的に分離する方法を学びましょう。

サンプル前処理の目的は何ですか?正確で信頼性の高い分析結果を保証する

サンプル前処理が、分析対象物の分離、妨害物質の除去、および正確な科学機器分析の確保にいかに重要であるかをご覧ください。

分析においてサンプル調製が重要なのはなぜですか?正確で再現性のある結果を保証するため

信頼できる科学的分析のために、正確性、再現性、そして意味のあるデータを保証する適切なサンプル調製の重要性について学びましょう。

サンプルサイズは測定に必要な精度にどのように影響しますか?データ品質を最適化する

信頼性の高い高確度の結果を得るために、サンプリング誤差と機器誤差を減らすためのサンプルサイズと測定精度のバランスの取り方を学びましょう。

サンプルサイズは分析にどのように影響しますか?研究の信頼性を最大化する

サンプルサイズが統計的検出力と精度にどのように影響するかを学びましょう。適切なサンプリングにより、誤った結論を避け、自信を持ってデータに基づいた意思決定を行いましょう。

サンプルサイズは何によって決まるのか?正確な調査のための3つの主要因をマスターする

誤差の範囲、信頼水準、母集団の分散がどのようにサンプルサイズを決定するかを学びましょう。信頼性の高い結果を得るために戦略的なトレードオフを行いましょう。

サンプルサイズ要件に影響を与える要因は何ですか?信頼できる研究のためのトレードオフをマスターしましょう

誤差の範囲、信頼水準、母集団のばらつきが、統計的に妥当で費用対効果の高い研究のためのサンプルサイズをどのように決定するかを学びましょう。

ハンディ型Xrfの利点は何ですか?即座に現場で元素分析を実現

ハンディ型XRF分析計の主な利点をご覧ください:現場での使用を可能にする携帯性、迅速な非破壊検査、そして即座の材料識別。

Xrf(蛍光X線分析)とは?非破壊的な元素分析ガイド

X線蛍光分析(XRF)の仕組みを学びましょう:材料の元素組成を特定するための迅速で非破壊的な技術です。

XrfとXrd技術の違いとは?適切な分析ツールの選び方ガイド

XRF(元素分析)とXRD(結晶構造解析)の主な違いを理解し、材料特性評価のニーズに最適な技術を選択しましょう。

Xrfで検出できないものは何ですか?Xrf分析の重大な限界を明らかにする

XRFが炭素や酸素のような軽元素を検出できない理由、化合物を見分けられない理由、そして試料の表面を超えて分析できない理由を学びましょう。

Xrfで検出できる元素は何ですか?ナトリウムからウランまで、重要な盲点とは

XRFが検出できる元素(NaからUまで)と、炭素や酸素のような軽元素を分析できない理由を学びましょう。あなたのラボに最適なツールを見つけてください。

XrdとXrfの用途とは?元素分析と構造分析の違いを解き明かす

XRF(元素組成)とXRD(結晶構造)の主な違いを学び、材料に最適な分析手法を選択しましょう。

Xrfはどこで使われている?非破壊元素分析の応用ガイド

金属製造や鉱業から美術品保存、環境安全まで、XRF分析の産業と応用を発見してください。

Xrfの鑑識における応用とは?証拠の元素指紋を解き明かす

XRF鑑識がどのようにして銃器残渣、ガラス、塗料、土壌を非破壊的に分析し、迅速な現場での元素分析によって容疑者を犯行現場に結びつけるかを探ります。

Xrfの基本理論とは?原子レベルの材料分析を解き明かす

XRFがどのようにX線励起を利用して、独自の蛍光指紋を介して元素を特定し、非破壊的な材料組成分析を可能にするかをご覧ください。

Xrf分析装置の精度はどのくらいですか?現場でラボ品質の結果を実現

XRF分析装置の精度がppmから100%の検出までどのように機能するか、および材料試験と分析の結果に影響を与える主要な要因について学びましょう。

Xrf膜厚測定の原理とは?非破壊コーティング分析を解き明かす

X線蛍光を利用したXRF膜厚測定が、非接触でコーティングの厚さを分析する仕組みを学びましょう。金属めっきの品質管理に最適です。

Xrf分析の精度はどのくらいですか?適切な方法論でラボ品質の結果を達成する

サンプル前処理、校正、マトリックス効果がXRFの精度をどのように決定するかを学びましょう。ラボのニーズに合わせて、真値の1〜5%以内の結果を達成します。

Xrfにおける誤差の原因は何ですか?マスターサンプル、装置、およびメソッド管理

XRFの誤差の3つの主要な原因(サンプル効果、装置のドリフト、キャリブレーション)について学びましょう。精度と信頼性のために分析を最適化します。

Ftirの用途にはどのようなものがありますか?製薬から法医学までの材料識別

製薬、法医学などにおける材料識別、品質管理、分析のためのFTIR分光法の多様な用途を探る。

Ftirの最も一般的な用途は何ですか?ポリマーから医薬品までの材料を特定する

信頼性の高い材料識別のために、品質管理、ポリマー分析、医薬品、法医学におけるFTIR分光法の主要な用途を探ります。

このFtir技術の限界は何ですか?分子分析の課題を克服する

FTIR分光法の限界、例えば微量分析感度の低さ、水の干渉、IR不活性分子の分析不能性などについて学びましょう。

Ftirによるサンプル分析はどのように行われますか?信頼できる結果を得るためのステップバイステップガイド

背景スキャン、サンプル調製、データ取得の3段階のFTIR分析プロセスを学びましょう。正確な分子同定のために、ATR、KBrペレット、ソルトプレートを習得します。

Ftirの代替手段とは?材料分析に最適なツールを見つける

ラマン分光法、NMR、MS、XRDなど、FTIRの代替手段を探ります。特定の分析ニーズに最適な技術を選択する方法を学びましょう。

Ftirにおける試料調製法とは?試料に合った適切な技術を選択する

FTIRの主要な試料調製法であるKBr錠剤法、ATR法、反射法について学びましょう。正確で効率的な分析のために、試料の種類に合わせましょう。

Ftir分光分析中に取るべき予防措置は何ですか?正確で信頼性の高い結果を保証するために

FTIRの重要な注意事項を学びましょう:光学部品を湿気から保護し、サンプルを正しく準備し、正確で再現性のあるスペクトルを得るためにバックグラウンドスキャンを実行します。

Ftirにはどのような材料が必要ですか?サンプル調製と光学系の必須ガイド

正確なサンプル調製と信頼性の高い結果を得るために、IR透過性塩プレートからATR結晶まで、FTIR分析に不可欠な材料を学びましょう。

Ftir分析のサンプル調製方法とは?鮮明で正確なスペクトルを得るためのステップバイステップガイド

固体、液体、気体のFTIRサンプル調製のための最良の方法を学びましょう。高品質の結果を得るために、KBrペレット法、ATR法、透過セル法を比較します。

Ftirで固体サンプルを調製する際にKbrペレットが使用されるのはなぜですか?クリアで信頼性の高い固体分析を実現

KBrペレットがFTIR用の透明なサンプル調製をどのように可能にし、干渉なしに固体材料の正確な化学的フィンガープリンティングを保証するかを発見してください。

Ftirは何を読み取るのか?赤外分光法による分子指紋の解読

FTIRは、赤外光の吸収を測定することにより分子振動を読み取り、物質の同定と分析のための固有の化学的指紋を提供します。

FtirとIrの違いは何ですか?現代分光法の革命的な飛躍

FTIRが従来のIRに取って代わった理由、すなわち、より優れた速度、感度、精度についてご紹介します。機器構成と性能における主な違いを学びましょう。

Ftirは何を測定するために使用されますか?化学結合と分子構造を特定する

FTIRは赤外光の吸収を測定し、官能基と分子構造を特定することで、材料分析のための化学的指紋を提供します。

Ftirとは何か、なぜ使用されるのか?材料識別のための化学的指紋を解読する

FTIR分光法がどのように機能して未知の材料を識別し、独自の赤外線吸収パターンを通じて化学組成を確認するかを学びましょう。

赤外分光分析で分析できるサンプルの種類は何ですか?固体、液体、気体、その他

KBrペレット、ATR、マリール法、ガスセルを使用して、固体、液体、気体のIR分光分析の準備を行う方法を学び、正確な結果を得ましょう。

生物サンプルのIrイメージングに利用できる技術は何ですか?化学マッピングのためのFtir顕微鏡法をマスターする

生物サンプルのIRイメージングのためのFTIR顕微鏡法を探求します。水の影響を克服し、タンパク質、脂質、核酸をマッピングする方法を学びましょう。

Ir分光法で使用されるサンプリング技術にはどのような種類がありますか?Kbr法、マルチ法、Atr法のガイド

KBrペレット、マルチ、液体セル、そして固体、液体、水溶液のための最新のATRなど、IR分光法のサンプリング技術を探ります。

Ir分光法の応用は何ですか?品質管理と研究のための化学構造を特定する

IR分光法が医薬品、法医学、食品安全、材料科学において、迅速かつ非破壊的な化学分析にどのように使用されているかをご覧ください。

Ir分光法のテクニックとは?クリアな結果を得るためのサンプル調製の習得

固体、液体、気体のIR分光法のコア技術を学びましょう。正確な同定と分析のために、適切なサンプル調製法を選択してください。

最も一般的に使用されているIr分光計の種類は何ですか?Ftir技術の力を発見する

フーリエ変換赤外(FTIR)分光計が、世界中の研究室で高速かつ正確な化学分析の業界標準である理由をご覧ください。

Ir分光計の基本的な構成要素は何ですか?Ftir装置の主要部品ガイド

IR分光計の4つの必須コンポーネント(光源、干渉計、サンプル、検出器)について学びましょう。正確な化学分析のためにFTIRがどのように機能するかを理解します。

Irにおけるサンプルの調製方法とは?固体、液体、気体分析のガイド

固体(KBrペレット)、液体(薄膜)、気体に対する主要なIRサンプル調製方法を学びましょう。明確で正確なスペクトルを得るために、よくある落とし穴を回避してください。

Ir分光法で分析できるサンプルの種類は? 固体、液体、気体の分析

IR分光法が固体、液体、気体をどのように分析するかを発見してください。実験室で正確な結果を得るための重要なサンプル調製技術を学びましょう。

Ir分光法でKbrペレットが基準として使用されるのはなぜですか?干渉のないクリアな分析を実現する

KBrが固体試料分析に最適なIR透過性マトリックスであり、ホルダー材料による干渉なしに正確なスペクトルを保証する理由を学びましょう。

Ir分光法の種類とは?適切な方法を選択するためのガイド

主なIR分光法(透過法、ATR法、正反射法、拡散反射法)を探る。サンプルタイプに最適な方法を選択する方法を学ぶ。

Ir分光法の限界とは?正確な分析のための境界線を理解する

IR分光法の主な限界(双極子モーメントの規則、水の干渉、定性的な制約など)を探り、効果的な分子分析のために理解を深めます。

Ir分光光度法の利点は何ですか?ラボのための迅速で非破壊的な化学分析

IR分光光度法の主な利点を発見してください:迅速な官能基同定、非破壊分析、およびラボ向けの多様なサンプルハンドリング。

臭化カリウムは人間にどのような影響を与えますか?そのリスクと廃止された医療用途を見る

臭化カリウムは慢性毒性(臭素中毒)のリスクが高い中枢神経抑制剤です。なぜそれがもはや人間医学で使用されないのかを学びましょう。

Kbrテクノロジーとは?工業規模の化学品生産の青写真

KBRテクノロジーとは、アンモニア、精製、オレフィン生産のためのライセンス供与された工業プロセスを指します。KBR独自の設計が世界の産業をどのように動かしているかをご覧ください。

濃度はIrにどのように影響しますか?定量分析とスペクトル解釈を習得する

濃度がIRピークの強度と形状にどのように影響するかを学び、正確な分光法におけるBeer-Lambertの法則の限界を理解します。

赤外分光法の危険性は何ですか?サンプル調製と機器の安全性の理解

IR分光法の最小限のリスクを発見し、サンプル調製、化学薬品、および補助機器から生じる実際の危険性を軽減する方法を学びましょう。

Ir分光法で通常使用される溶媒は何ですか?より明確な結果を得るためにサンプル調製を最適化する

CCl₄やCS₂のようなIR分光法に最適な溶媒、そのIRウィンドウ、そして正確な分析のために干渉を避ける方法を学びましょう。

ヌジョール法とは?固体試料のIr分光法のためのクイックガイド

ヌジョール法がいかにして光の散乱を抑えることで固体のIR分析を簡素化するかを学びましょう。その利点、限界、および理想的な用途を理解します。

Ir分光法におけるエラーの原因とは?一般的な間違いを避けるためのサンプル調製を習得する

IR分光法のエラーの主な原因(不適切なサンプル調製、大気干渉、バックグラウンドの問題)を学びましょう。信頼性の高い結果を得るために技術を向上させましょう。

Irにはどのくらいのサンプルが必要ですか?最小限の材料で分析を最適化する

IR分光法に必要な正確なサンプル量を学びましょう:KBr錠剤には1-2 mg、薄膜には1滴、ATRにはごく少量。

Ir分光法の基本的な装置は何ですか?現代の化学分析のためのFt-Ir分光計

高速で精密な赤外分光法および化学分析の現代標準であるFT-IR分光計の主要コンポーネントと利点を発見してください。

Ir分光分析に使用される機器は何ですか?Ftir分光計の決定版ガイド

FTIR分光計の仕組み、主要コンポーネント、そしてなぜそれが現代の化学物質同定および分析の標準機器であるのかを学びましょう。

Ftirは純度を決定できますか?化学的フィンガープリントで汚染物質を特定する

FTIR分光法が、不純物の独自の化学的フィンガープリントを検出することによって純度を評価する方法、その能力と主な限界について学びましょう。

Ftir分析用サンプル調製にKbrが使用されるのはなぜですか?クリアで高品質なスペクトルを解き放つ

臭化カリウム(KBr)がFTIRサンプル調製の標準である理由を発見してください:IR透過性、ペレット形成、そして吸湿性のような主要なトレードオフ。

FtirでKbrが標準試料として使用されるのはなぜですか?明確で正確な固体試料分析の鍵

FTIR分光法にとってKBrが理想的なマトリックスである理由を学びましょう:IR透過性、化学的不活性、および正確な試料分析のための機械的特性。

FtirにKbrは使われますか?固体試料分析の必須ガイド

KBrがFTIR試料調製の標準である理由を学びましょう。KBrペレットが分光法における固体材料の正確な分析をどのように可能にするかを発見してください。

IrにおけるKbrの代替品は何ですか?正確な分光分析のための適切なサンプルマトリックスの選択

KBrのIR分光分析における最良の代替品を発見しましょう。水溶液にはAgCl、費用対効果の高い用途にはNaClがあります。湿気の影響を避ける方法を学びましょう。

Ftirで臭化カリウム(Kbr)が使用されるのはなぜですか?正確な固体サンプル分析の鍵

FTIRサンプル調製においてKBrが標準とされる理由を学びましょう。そのIR透過性、不活性、そして鮮明なスペクトルを得るための均一なペレットを作成できる能力についてです。

Ftirサンプル調製にKbrが使用されるのはなぜですか?適切なペレット技術で、鮮明で正確なIrスペクトルを得る

FTIRサンプル調製にKBrが不可欠な理由を学びましょう。KBrはIR透明性を提供し、正確な測定のためにサンプルを希釈し、固体の分析のためのペレット形成を可能にします。

FtirにおけるKbrの試料比率はどのくらいですか?完璧なペレット調製のための1:100比率をマスターする

FTIR分析における標準的な試料とKBrの1:100比率について、調製手順、よくある落とし穴、およびクリアなスペクトルを得るためのトラブルシューティングのヒントを含めて学びます。

FtirにおけるKbrの役割とは?高品質な固体試料分析のためのガイド

KBrペレットが固体試料のIR透過性マトリックスを提供することで、いかにしてクリアなFTIRスペクトルを可能にし、正確で再現性のある結果を保証するかを学びましょう。

KbrはIr放射を吸収しますか?クリーンなスペクトルを得るための標準的なマトリックスである理由

KBrは中赤外域でIR透過性があるため、サンプルペレットに最適です。正確なFTIR分析のために、その吸湿性の性質をどのように扱うかを学びましょう。

赤外分光法で臭化カリウムが標準化合物として使用されるのはなぜですか?クリーンで干渉のないサンプル分析を実現しましょう

KBrのIR透過性が、IR分光法におけるサンプル調製に理想的である理由を学び、マトリックス干渉なしに正確な分析を可能にします。

Ftirに最適な溶媒は?クリアで正確なスペクトルを得るための溶媒選択のマスター

サンプル(CS₂やCHCl₃など)の化学構造と分析したいスペクトル領域に基づいて、干渉を避けるための最適なFTIR溶媒の選択方法を学びましょう。

臭化カリウム(Kbr)が赤外領域に適している特性は何ですか?クリアなIr分光分析のロックを解除

KBrのIR透過性とペレット形成能力が、赤外分光法におけるサンプル分析に理想的である理由を発見し、正確な結果を保証します。