知識 FTIRは純度を決定できるか?考慮すべき4つのポイント
著者のアバター

技術チーム · Kintek Solution

更新しました 2 days ago

FTIRは純度を決定できるか?考慮すべき4つのポイント

Fourier Transform Infrared Spectroscopy (FTIR) is a powerful analytical technique used to identify and characterize chemical compounds based on their infrared absorption spectra. While FTIR is excellent for identifying functional groups and molecular structures, its ability to determine the purity of a sample is limited. FTIR can provide qualitative insights into the presence of impurities by detecting additional peaks or shifts in the spectrum, but it is not inherently quantitative for purity assessment. For precise purity determination, complementary techniques like chromatography or mass spectrometry are often required.

Key Points Explained:

FTIRは純度を決定できるか?考慮すべき4つのポイント
  1. FTIR's Primary Function:

    • FTIR is primarily used for identifying functional groups and molecular structures in a sample. It works by measuring the absorption of infrared light, which causes molecular vibrations. Each functional group has a unique absorption pattern, allowing for identification.
    • However, FTIR is not designed to quantify the concentration of components in a mixture, which is essential for determining purity.
  2. Detection of Impurities:

    • FTIR can detect impurities if they introduce additional peaks or cause shifts in the spectrum. For example, if a sample contains a contaminant with distinct functional groups, those groups will appear as extra peaks in the FTIR spectrum.
    • While this provides qualitative information about the presence of impurities, it does not provide quantitative data about their concentration.
  3. Limitations in Quantifying Purity:

    • FTIR lacks the sensitivity and precision required for accurate quantification of impurities. The intensity of peaks in an FTIR spectrum is influenced by factors like sample thickness, homogeneity, and instrument calibration, making it difficult to correlate peak intensity directly with concentration.
    • Quantitative analysis typically requires calibration curves and reference standards, which are not standard practices in FTIR analysis.
  4. Complementary Techniques for Purity Determination:

    • Techniques like High-Performance Liquid Chromatography (HPLC) or Gas Chromatography-Mass Spectrometry (GC-MS) are better suited for purity determination. These methods can separate and quantify individual components in a mixture with high precision.
    • For example, HPLC can measure the relative concentrations of a main compound and its impurities, providing a clear purity assessment.
  5. Situational Use of FTIR for Purity:

    • In some cases, FTIR can be used to estimate purity if the sample is relatively simple and the impurities are known. For instance, if a sample is expected to contain only one or two impurities, and their spectra are well-characterized, FTIR might provide a rough estimate of purity.
    • However, this approach is not reliable for complex mixtures or unknown impurities.
  6. Best Practices for Purity Analysis:

    • When purity is a critical parameter, it is advisable to use FTIR as a preliminary screening tool to identify potential impurities, followed by more quantitative techniques for accurate determination.
    • Combining FTIR with other analytical methods ensures a comprehensive understanding of the sample's composition and purity.

In summary, while FTIR is a valuable tool for identifying chemical structures and detecting impurities, it is not the most effective method for determining purity. For accurate purity assessment, it is best to use FTIR in conjunction with quantitative techniques like chromatography or mass spectrometry.

Summary Table:

Aspect Details
Primary Function Identifies functional groups and molecular structures.
Impurity Detection Detects additional peaks or shifts in the spectrum (qualitative only).
Limitations Not quantitative; lacks sensitivity for precise purity assessment.
Complementary Techniques HPLC, GC-MS for accurate purity determination.
Best Practices Use FTIR for preliminary screening, then combine with quantitative methods.

Need help determining sample purity? Contact our experts today for tailored analytical solutions!

関連製品

分子蒸留

分子蒸留

当社の分子蒸留プロセスを使用して、天然物を簡単に精製および濃縮します。高真空圧、低い動作温度、短い加熱時間により、材料の自然な品質を維持しながら、優れた分離を実現します。今すぐメリットを発見してください!

赤外線シリコン/高抵抗シリコン/単結晶シリコンレンズ

赤外線シリコン/高抵抗シリコン/単結晶シリコンレンズ

シリコン (Si) は、約 1 μm ~ 6 μm の近赤外 (NIR) 範囲での用途に最も耐久性のある鉱物材料および光学材料の 1 つとして広く知られています。

水の電気分解用二酸化イリジウム IrO2

水の電気分解用二酸化イリジウム IrO2

二酸化イリジウムの結晶格子はルチル構造です。二酸化イリジウムやその他の希少金属酸化物は、工業用電気分解用のアノード電極や電気生理学的研究用の微小電極に使用できます。

PTFEボトル油煙採取管

PTFEボトル油煙採取管

PTFE製品は一般に「ノンスティックコーティング」と呼ばれ、ポリエチレンの水素原子をすべてフッ素に置き換えた合成高分子材料です。

ラボ用ITO/FTO導電性ガラス洗浄フラワーバスケット

ラボ用ITO/FTO導電性ガラス洗浄フラワーバスケット

PTFE製クリーニングラックは、主にテトラフルオロエチレンでできている。プラスチックの王様」と呼ばれるPTFEは、テトラフルオロエチレンを主成分とする高分子化合物です。

硫化亜鉛(ZnS)ウィンドウ/ソルトシート

硫化亜鉛(ZnS)ウィンドウ/ソルトシート

光学硫化亜鉛 (ZnS) ウィンドウは、8 ~ 14 ミクロンの優れた IR 透過範囲を備えています。過酷な環境に対する優れた機械的強度と化学的不活性性 (ZnSe ウィンドウよりも硬い)

光学窓

光学窓

ダイヤモンド光学ウィンドウ: 優れた広帯域赤外線透過性、優れた熱伝導性、赤外線散乱の低さ、高出力 IR レーザーおよびマイクロ波ウィンドウ用途向け。

耐高温光学石英ガラスシート

耐高温光学石英ガラスシート

電気通信、天文学、その他の分野で正確な光を操作するための光学ガラス シートの力を発見してください。卓越した透明度とカスタマイズされた屈折特性により、光学技術の進歩を解き放ちます。

赤外線透過コーティングサファイアシート/サファイア基板/サファイアウィンドウ

赤外線透過コーティングサファイアシート/サファイア基板/サファイアウィンドウ

サファイアから作られた基板は、比類のない化学的、光学的、物理的特性を誇ります。熱衝撃、高温、砂の浸食、水に対する優れた耐性が際立っています。


メッセージを残す