製品 ラボ用消耗品と材料 光学材料 フッ化バリウム(BaF2)基板/窓
フッ化バリウム(BaF2)基板/窓

光学材料

フッ化バリウム(BaF2)基板/窓

商品番号 : KTOM-BFS

価格は以下に基づいて変動します 仕様とカスタマイズ


寸法許容差
±0.1
面取り
0.25mm×45°
滑らかさ
40-20またはその他
ISO & CE icon

配送:

お問い合わせ 配送詳細を確認してください オンタイムディスパッチ保証.

フッ化バリウム

フッ化バリウム (BaF2) は、NIR、VIS、および MWIR スペクトルにわたる光学用途に使用される結晶性化合物です。高エネルギー放射線に対する耐性と、最大 800°C の乾燥温度でのパフォーマンスを備えた、優れた選択肢です。ただし、湿った雰囲気では、時間の経過とともに VUV 透過率が低下し、500°C で水による腐食が発生します。 BaF₂ は、耐放射線性、サーモグラフィー、医療機器、レーザー、天文学を必要とする VUV ウィンドウに最適です。

詳細と部品

高光透過率フッ化バリウム
高光透過率フッ化バリウム
高精度素材フッ化バリウム
高精度素材フッ化バリウム
耐食性フッ化バリウム
耐食性フッ化バリウム
幅広い用途

BaF2の主な性質と性能

透過距離(μm) 0.15~12.5
透過率>90% (0.35~9μm、3mm)
2.58μmでの反射損失6.8%(両面)
ヌープ硬さ(kg/mm2) 82 500g圧子付き
密度(g/cm3) 4.89
融点 (℃) 1280

一般的なサイズ

丸型Φ5.0; Φ10.0; Φ12.7; Φ15.0; Φ20.0
直径(mm) Φ25.4; Φ30.0; Φ38.1; Φ50.8; Φ76.2
正方形の形状5.0x5.0 ; 10.0x10.0 ; 15.0x15.0
幅×高さ(mm) 20.0x20.0; 25.0x25.0; 50.0x50.0

カスタマイズされたサービスを提供する

革新的で最先端の溶解プロセスの導入を通じて、当社は高品質のガラス製品の開発と製造における広範な専門知識を獲得し、幅広い光学製品を提供しています。 さまざまな商業、産業、科学用途向けのガラス製品。 同社は、光学ガラスの原ガラスから切断部品、完成品まで、さまざまな仕様を提供し、顧客と緊密に協力して、顧客のニーズに応じて製品をカスタマイズします。 品質に対する揺るぎない取り組みにより、当社はお客様の要件に合わせた完璧なソリューションを確実にお届けします。

さらにお見積りが必要な場合は、お問い合わせください。

FAQ

光学水晶板とは

光学水晶板は、高純度の水晶から作られた透明で耐久性のある部品です。耐熱性、耐薬品性に優れ、様々な産業分野で広く使用されています。

オプティカルウィンドウとは何ですか?

オプティカルウィンドウは、光の特性を歪めることなく透過させるために使用される透明な部品です。高出力赤外レーザーシステム、マイクロ波ウインドウ、広帯域赤外透過性と熱伝導性を必要とする環境など、様々な用途で使用されています。

物理蒸着 (PVD) とは何ですか?

物理蒸着 (PVD) は、固体材料を真空中で蒸発させ、それを基板上に蒸着することによって薄膜を蒸着する技術です。 PVD コーティングは耐久性、耐傷性、耐食性に優れているため、太陽電池から半導体に至るまで、さまざまな用途に最適です。 PVD は、高温に耐えられる薄膜も作成します。ただし、PVD はコストが高くなる可能性があり、コストは使用する方法によって異なります。たとえば、蒸着は低コストの PVD 法ですが、イオン ビーム スパッタリングはかなり高価です。一方、マグネトロン スパッタリングは高価ですが、より拡張性があります。

光学バンドパスフィルターとは?

光学バンドパスフィルターとは、特定の波長帯域を分離し、その波長帯域のみを通過させ、それ以外の波長帯域を遮断するように設計された光学フィルターです。

バンドパスフィルターは何をするのでしょうか?

光学バンドパス フィルターは、吸収、反射、またはその両方を使用して不要な周波数をブロックしながら、特定のスペクトルの光が基板を透過できるようにするフィルターです。非常に狭い帯域から非常に広い範囲まで、特定の周波数範囲で信号を送信するために使用できます。

バンドパスフィルターの3dB帯域幅とは何ですか?

バンドパスフィルターの帯域幅は、最小限の減衰で通過が許可される周波数範囲です。信号のパワー レベルが最大値から 3 dB 減少する周波数は、3 dB 帯域幅と呼ばれます。

バンドパスサンプリングの利点は何ですか?

ローパス サンプリングに対するバンドパス サンプリングの利点: A/D コンバータの速度要件が軽減されます。特定の間隔の信号をキャプチャするために必要なデジタル メモリの量を増やします。

光学石英板の主な種類は?

光学石英板の主な種類は、JGS1、JGS2、JGS3石英板、耐高温光学石英ガラス板、K9石英板、光学超透明ガラス板、ダイヤモンド光学窓、MgF2フッ化マグネシウム結晶基板、赤外シリコンレンズ、石英電解セル、フッ化バリウム基板、CaF2基板、赤外線透過コーティングサファイア板、ITO/FTOガラス収納ラック、フロートソーダ石灰光学ガラス、ホウケイ酸ガラス、グラッシーカーボン板、高純度二酸化ケイ素材料など。

光学窓にはどのような種類がありますか?

光学窓には、ダイヤモンド窓、CaF2窓、MgF2窓、シリコン窓、石英ガラス板、硫化亜鉛(ZnS)窓、フッ化バリウム(BaF2)窓、セレン化亜鉛(ZnSe)窓、サファイア窓などの種類があります。それぞれの種類は、異なる用途に適したユニークな特性を持っています。

光学ガラスは何に使われているのですか?

光学ガラスは、その並外れたレベルの透明性と耐久性により、分析機器や医療機器用のレンズなど、さまざまな光学用途に最も一般的に使用される材料です。写真レンズ。光学システムおよび機器用の窓。

マグネトロンスパッタリングとは何ですか?

マグネトロン スパッタリングは、密着性に優れた非常に緻密な膜を生成するために使用されるプラズマ ベースのコーティング技術であり、融点が高く蒸発できない材料にコーティングを作成するための多用途の方法です。この方法では、ターゲットの表面近くに磁気的に閉じ込められたプラズマが生成され、そこで正に帯電した高エネルギーイオンが負に帯電したターゲット材料と衝突し、原子が放出または「スパッタリング」されます。これらの放出された原子は、基板またはウェーハ上に堆積され、目的のコーティングが作成されます。

光バンドパスフィルターの主な種類は?

光バンドパスフィルターの主な種類には、ナローバンドフィルター、ショートパスフィルター、ロングパスフィルター、光学窓、フッ化バリウム基板のような特殊フィルターなどがあります。

光学石英プレートの用途は?

光学石英板は、電気通信、天文学、実験室、高出力赤外レーザーやマイクロ波ウインドウ、紫外・赤外分光、近赤外域用途、電気化学実験など、様々な用途に使用されています。

光学窓の仕組み

オプティカル・ウィンドウは、吸収、反射、散乱を最小限に抑えながら光を通すことで機能します。波長や強度などの光の特性を維持するように設計されており、クリアで正確な透過を保証します。

光学ガラスの成分は何ですか?

すべてのガラスの約 95% は、二酸化ケイ素 (シリカ)、Na2O (ソーダ)、CaO (石灰) を含む「ソーダ石灰」タイプです。クラウン ガラスはソーダ石灰シリカ複合材料です。

なぜマグネトロンスパッタリングなのか?

マグネトロンスパッタリングは、蒸着法を超えて膜厚や膜密度の精度が高いため、好まれています。この技術は、特定の光学的または電気的特性を持つ金属または絶縁コーティングを作成するのに特に適しています。さらに、マグネトロン スパッタリング システムは複数のマグネトロン ソースを使用して構成できます。

光学バンドパスフィルターの仕組み

光学バンドパスフィルターは、多層誘電体薄膜を用いて特定の波長帯域の光学特性を変調させることで機能します。これらの薄膜は、目的の範囲外の波長を反射または吸収し、目的の波長のみを通過させるように設計されています。

光学石英板を使用する利点は何ですか?

光学石英プレートは、優れた耐熱性、耐薬品性、高い透明度、調整された屈折特性、レーザーダメージへの耐性、様々な環境下での安定性、様々な産業における汎用性など、いくつかの利点を備えています。

高出力赤外レーザーアプリケーションに光学窓を使用する利点は何ですか?

高出力赤外レーザーアプリケーションに使用される光学ウィンドウには、優れた広帯域赤外透過性、優れた熱伝導性、赤外スペクトルにおける低散乱性など、いくつかの利点があります。これらの特性は、レーザーシステムの性能と寿命の維持に役立ちます。

最も一般的な光学ガラスは何ですか?

IR スペクトル用の最も一般的な光学ガラスは、フッ化カルシウム、溶融シリカ、ゲルマニウム、フッ化マグネシウム、臭化カリウム、サファイア、シリコン、塩化ナトリウム、セレン化亜鉛、および硫化亜鉛です。

薄膜形成に使用される材料は何ですか?

薄膜堆積では、一般的に金属、酸化物、化合物を材料として利用しますが、それぞれに独自の長所と短所があります。金属は耐久性と堆積の容易さの点で好まれますが、比較的高価です。酸化物は耐久性が高く、高温に耐え、低温でも堆積させることができますが、脆くて加工が難しい場合があります。化合物は強度と耐久性を備え、低温で堆積でき、特定の特性を示すように調整できます。

薄膜コーティングの材料の選択は、用途の要件によって異なります。金属は熱と電気の伝導に理想的ですが、酸化物は保護を提供するのに効果的です。化合物は特定のニーズに合わせて調整できます。最終的に、特定のプロジェクトに最適な素材は、アプリケーションの特定のニーズによって異なります。

光バンドパスフィルターを使用するメリットは何ですか?

光学バンドパスフィルターは、分光選択性が高く、通過する波長を正確に制御できるなどの利点があります。また、高透過率、無角度、サイドバンド除去など、様々な光学用途に対応できるよう設計されています。

光学石英板はどのように製造されるのですか?

光学石英プレートは通常、高純度水晶から製造されます。その種類によっては、光学特性を向上させるために、コーティングや精密な仕様を満たすための成形など、様々な加工が施されます。

なぜCaF2ウインドウは特定の光学用途に好まれるのか?

CaF2ウィンドウは、その汎用性、環境安定性、レーザー損傷への耐性、200nmから約7μmまでの高い安定した透過率により、光学用途に好まれています。これらの特性により、幅広い光学用途に適しています。

最適な薄膜成膜を実現するにはどのような方法がありますか?

望ましい特性を備えた薄膜を実現するには、高品質のスパッタリングターゲットと蒸着材料が不可欠です。これらの材料の品質は、純度、粒子サイズ、表面状態などのさまざまな要因によって影響されます。

不純物は得られる薄膜に欠陥を引き起こす可能性があるため、スパッタリングターゲットまたは蒸着材料の純度は重要な役割を果たします。粒子サイズも薄膜の品質に影響を与え、粒子が大きくなると膜の特性が低下します。さらに、表面が粗いとフィルムに欠陥が生じる可能性があるため、表面状態も非常に重要です。

最高品質のスパッタリングターゲットと蒸着材料を得るには、高純度、小さな粒径、滑らかな表面を備えた材料を選択することが重要です。

薄膜蒸着の用途

酸化亜鉛系薄膜

ZnO 薄膜は、熱、光学、磁気、電気などのさまざまな産業で応用されていますが、主な用途はコーティングと半導体デバイスです。

薄膜抵抗器

薄膜抵抗器は現代のテクノロジーにとって極めて重要であり、ラジオ受信機、回路基板、コンピューター、高周波デバイス、モニター、ワイヤレス ルーター、Bluetooth モジュール、および携帯電話受信機で使用されています。

磁性薄膜

磁性薄膜は、エレクトロニクス、データストレージ、無線周波数識別、マイクロ波装置、ディスプレイ、回路基板、オプトエレクトロニクスの主要コンポーネントとして使用されています。

光学薄膜

光学コーティングとオプトエレクトロニクスは、光学薄膜の標準的な用途です。分子線エピタキシーでは、光電子薄膜デバイス (半導体) を製造できます。この場合、エピタキシャル膜は一度に 1 原子ずつ基板上に堆積されます。

高分子薄膜

ポリマー薄膜は、メモリチップ、太陽電池、電子デバイスに使用されます。化学蒸着技術 (CVD) により、適合性やコーティングの厚さを含むポリマー フィルム コーティングを正確に制御できます。

薄膜電池

薄膜電池は埋め込み型医療機器などの電子機器に電力を供給しており、リチウムイオン電池は薄膜の使用により大幅に進歩しました。

薄膜コーティング

薄膜コーティングは、さまざまな産業や技術分野におけるターゲット材料の化学的および機械的特性を強化します。一般的な例としては、反射防止コーティング、紫外線防止または赤外線防止コーティング、傷防止コーティング、レンズの偏光などが挙げられます。

薄膜太陽電池

薄膜太陽電池は太陽エネルギー産業にとって不可欠であり、比較的安価でクリーンな電力の生産を可能にします。太陽光発電システムと熱エネルギーは、適用可能な 2 つの主要な技術です。

光学バンドパスフィルターはどのような分野でよく使われていますか?

光学バンドパスフィルターは、イメージングやマシンビジョンシステム、バイオメトリクス、テレコミュニケーション、天文学など、正確な波長制御が不可欠な分野で一般的に使用されています。

K9石英シートの特徴は?

K9水晶とも呼ばれるK9石英板は、卓越した光学特性で知られる光学用ホウケイ酸クラウンガラスの一種です。透明度が高く、屈折特性が調整されているため、光学用途に広く使用されています。

MgF2ウィンドウの特徴は?

MgF2ウィンドウは、異方性を示す正方晶から作られている点が特徴です。この特性により、単結晶として扱うことが必須である精密イメージングや信号伝送に不可欠です。

薄膜の堆積に影響を与える要因とパラメータ

堆積速度:

フィルムの製造速度(通常は厚さを時間で割った値で測定されます)は、用途に適した技術を選択するために重要です。薄膜には中程度の堆積速度で十分ですが、厚い膜には速い堆積速度が必要です。速度と正確な膜厚制御のバランスをとることが重要です。

均一:

基板全体にわたるフィルムの一貫性は均一性として知られており、通常はフィルムの厚さを指しますが、屈折率などの他の特性にも関係する場合があります。均一性の過小または過大な仕様を避けるために、アプリケーションをよく理解することが重要です。

充填能力:

充填能力またはステップカバレージは、堆積プロセスが基板のトポグラフィーをどの程度うまくカバーするかを指します。使用される堆積方法 (CVD、PVD、IBD、または ALD など) は、ステップ カバレッジと充填に大きな影響を与えます。

フィルムの特徴:

フィルムの特性は、フォトニック、光学、電子、機械、または化学に分類できるアプリケーションの要件によって異なります。ほとんどの映画は、複数のカテゴリの要件を満たす必要があります。

プロセス温度:

フィルムの特性はプロセス温度に大きく影響され、アプリケーションによって制限される場合があります。

ダメージ:

各堆積技術には、堆積される材料に損傷を与える可能性があり、フィーチャが小さいほどプロセス損傷を受けやすくなります。潜在的な損傷源には、汚染、紫外線、イオン衝撃などがあります。材料とツールの限界を理解することが重要です。

狭帯域フィルターの特徴は?

ナローバンドフィルターは、通過帯域の上部が正方形になっており、より多くのエネルギーを通過させることができるユニークなフィルターです。この形状は、フィルターの構造に3つの材料を使用することでさらに強化され、通過帯域をさらに正確にすることができます。

電気通信における光学石英板の役割とは?

光学石英板は、精密な光操作、明瞭な信号伝送の確保、光学機器の性能向上のために電気通信分野で使用されています。

近赤外線(NIR)用途でのシリコンの性能は?

シリコンは近赤外(NIR)用途で非常に優れた性能を発揮し、約1μmから6μmの範囲をカバーします。シリコンは最も耐久性のある鉱物と光学材料の一つであり、近赤外用途に非常に適しています。

ショートパスフィルターとロングパスフィルターの違いは何ですか?

ショートパスフィルターは、特定のカットオフ波長より短い波長の光を透過させ、長い波長の光を遮断します。一方、ロングパスフィルターは、カットオフ波長よりも長い波長の光を透過させ、短い波長の光を遮断します。

光学石英板はどのように実験室研究に貢献しているのでしょうか?

光学石英プレートは、耐久性、耐薬品性、精密な光学特性により、実験室での研究に不可欠です。高品質の光学部品を必要とする様々な実験やセットアップに使用されています。

耐熱石英ガラスを使用するメリットは何ですか?

高温耐性の光学石英ガラスシートは、優れた耐熱性と耐薬品性を備えています。その卓越した透明度と調整された屈折特性により、電気通信や天文学のような精密な光操作を必要とする産業で広く使用されています。

光学窓にはどのような用途がありますか?

光学窓は、非常に広帯域の赤外透過性、優れた熱伝導性、赤外スペクトルでの低散乱性により、高出力赤外レーザーやマイクロ波アプリケーションに使用されています。

なぜ硫化亜鉛(ZnS)ウィンドウは過酷な環境で好まれるのか?

硫化亜鉛(ZnS)ウィンドウは、優れた機械的強度、化学的不活性、8-14ミクロンの広い赤外透過率を持つため、過酷な環境で好まれます。これらの特性により、耐久性に優れ、過酷な条件にも耐えることができます。

光学バンドパスフィルターの設計は性能にどのような影響を与えますか?

光学バンドパスフィルターの設計は、膜厚の変化に非常に敏感です。膜厚の大幅な変化は全体的な光学性能を低下させ、通過する波長を正確に制御するフィルターの能力に影響を与えます。

フッ化バリウム(BaF2)ウインドウの用途は?

BaF2ウィンドウは、その高速シンチレーション特性により、VUVや赤外分光のアプリケーションで重宝されています。その卓越した特性により、精密な分光分析に理想的な製品として求められています。
この製品に関するよくある質問をもっと見る

4.7

out of

5

The BaF2 substrate is incredibly durable and resistant to wear. It has exceeded our expectations in terms of quality and performance.

Aiden Ramirez

4.9

out of

5

The high light transmittance of the BaF2 substrate has significantly improved the efficiency of our optical system. We're very satisfied with the results.

Vera Smith

4.8

out of

5

The precision and accuracy of the BaF2 substrate are exceptional. It has enabled us to achieve precise and consistent results in our research.

Lucas Brown

4.7

out of

5

The BaF2 substrate is an excellent choice for applications requiring resistance to high-energy radiation. It has proven to be a valuable asset in our laboratory.

Isabella Garcia

5.0

out of

5

The substrate's wide application range has made it a versatile tool in our lab. We've been able to use it for a variety of experiments, and it has performed flawlessly.

Elijah Martinez

4.6

out of

5

The BaF2 substrate is a cost-effective solution for our research needs. It provides excellent value for money, and we're very happy with our purchase.

Amelia White

4.8

out of

5

The fast delivery of the BaF2 substrate was a lifesaver. We were able to get our experiment up and running quickly, which saved us valuable time.

Liam Jones

4.9

out of

5

The technological advancements incorporated into the BaF2 substrate are impressive. It has enabled us to explore new possibilities in our research.

Sophia Johnson

4.7

out of

5

The substrate's resistance to corrosion in dry temperatures up to 800°C has been a game-changer for our high-temperature experiments.

Oliver Taylor

5.0

out of

5

The BaF2 substrate has exceeded our expectations in terms of durability. It has withstood harsh conditions and continues to perform flawlessly.

Ava Williams

4.8

out of

5

The high precision material of the BaF2 substrate has enabled us to achieve sub-micron resolution in our imaging experiments.

Alexander Brown

4.6

out of

5

The substrate's transmission range from 0.15 to 12.5 μm has been incredibly useful for our broad range of applications.

Harper Davis

4.9

out of

5

The BaF2 substrate's low reflection loss at 2.58 μm has minimized signal distortion in our optical measurements.

Jackson Wilson

4.7

out of

5

The substrate's resistance to water corrosion up to 500°C has been crucial for our experiments involving high-temperature aqueous solutions.

Isabella Garcia

4.8

out of

5

The substrate's wide application range has made it an indispensable tool in our laboratory. It has facilitated a variety of experiments, from optical spectroscopy to laser processing.

Aiden Baker

PDF - フッ化バリウム(BaF2)基板/窓

ダウンロード

のカタログ 光学材料

ダウンロード

のカタログ 光学石英板

ダウンロード

のカタログ オプティカルウィンドウ

ダウンロード

のカタログ 光学材料

ダウンロード

のカタログ 薄膜蒸着材料

ダウンロード

のカタログ 光バンドパスフィルター

ダウンロード

引用を要求

弊社の専門チームが 1 営業日以内にご返信いたします。 お気軽にお問い合わせ下さい!

関連製品

フッ化バリウム(BaF2)スパッタリングターゲット/粉末/ワイヤー/ブロック/顆粒

フッ化バリウム(BaF2)スパッタリングターゲット/粉末/ワイヤー/ブロック/顆粒

フッ化バリウム (BaF2) 材料を手頃な価格で購入できます。スパッタリングターゲット、コーティング材、粉体などを幅広く取り揃え、お客様のニーズに応えます。今すぐ注文。

CaF2基板/ウィンドウ/レンズ

CaF2基板/ウィンドウ/レンズ

CaF2 ウィンドウは、結晶性フッ化カルシウムで作られた光学ウィンドウです。これらのウィンドウは多用途で、環境的に安定しており、レーザー損傷に対して耐性があり、200 nm から約 7 μm までの高い安定した透過率を示します。

MgF2フッ化マグネシウム結晶基板/窓/塩板

MgF2フッ化マグネシウム結晶基板/窓/塩板

フッ化マグネシウム (MgF2) は異方性を示す正方晶系結晶であるため、高精度のイメージングや信号伝送を行う場合には単結晶として扱うことが不可欠です。

チタン酸バリウム(BaTiO3)スパッタリングターゲット/粉末/ワイヤー/ブロック/顆粒

チタン酸バリウム(BaTiO3)スパッタリングターゲット/粉末/ワイヤー/ブロック/顆粒

実験室用にカスタマイズされたチタン酸バリウム (BaTiO3) 材料のラインナップをご覧ください。スパッタリングターゲット、コーティング材、粉体などの仕様・サイズを豊富に取り揃えております。リーズナブルな価格とカスタマイズされたソリューションについては、今すぐお問い合わせください。

フッ化カルシウム(CaF2)スパッタリングターゲット/粉末/ワイヤー/ブロック/顆粒

フッ化カルシウム(CaF2)スパッタリングターゲット/粉末/ワイヤー/ブロック/顆粒

実験室用の高品質フッ化カルシウム材料をお探しですか?当社の専門家チームは、お客様の特定のニーズに合わせてさまざまな純度、形状、サイズを調整します。当社のスパッタリング ターゲット、コーティング材料、粉末などの製品ラインナップをご覧ください。今すぐ見積もりを入手してください。

無アルカリ・ホウアルミノケイ酸ガラス

無アルカリ・ホウアルミノケイ酸ガラス

ボロアルミノケイ酸ガラスは熱膨張に対する耐性が高いため、実験用ガラス器具や調理器具など、温度変化への耐性が必要な用途に適しています。

フッ化マグネシウム(MgF2)スパッタリングターゲット/粉末/ワイヤー/ブロック/顆粒

フッ化マグネシウム(MgF2)スパッタリングターゲット/粉末/ワイヤー/ブロック/顆粒

研究室のニーズを満たす高品質のフッ化マグネシウム (MgF2) 材料をお探しですか?これ以上探さない!当社の専門的にカスタマイズされた材料は、お客様の特定の要件を満たすために、さまざまな純度、形状、サイズで提供されます。スパッタリング ターゲット、パウダー、インゴットなどを今すぐ購入しましょう。

フッ化ストロンチウム(SrF2)スパッタリングターゲット/粉末/ワイヤー/ブロック/顆粒

フッ化ストロンチウム(SrF2)スパッタリングターゲット/粉末/ワイヤー/ブロック/顆粒

研究室用のフッ化ストロンチウム (SrF2) 材料をお探しですか?これ以上探さない!当社は、スパッタリング ターゲット、コーティングなどを含む、さまざまなサイズと純度を提供しています。手頃な価格で今すぐ注文してください。

窒化ホウ素 (BN) セラミックチューブ

窒化ホウ素 (BN) セラミックチューブ

窒化ホウ素 (BN) は、高い熱安定性、優れた電気絶縁特性、および潤滑特性で知られています。

高純度ボロン(B)スパッタリングターゲット/粉末/ワイヤー/ブロック/顆粒

高純度ボロン(B)スパッタリングターゲット/粉末/ワイヤー/ブロック/顆粒

研究室の特定のニーズに合わせたボロン (B) 材料を手頃な価格で入手できます。当社の製品は、スパッタリング ターゲットから 3D プリンティング パウダー、シリンダー、粒子などまで多岐にわたります。今すぐご連絡ください。

光学窓

光学窓

ダイヤモンド光学ウィンドウ: 優れた広帯域赤外線透過性、優れた熱伝導性、赤外線散乱の低さ、高出力 IR レーザーおよびマイクロ波ウィンドウ用途向け。

フッ化ナトリウム(NaF)スパッタリングターゲット/粉末/ワイヤー/ブロック/顆粒

フッ化ナトリウム(NaF)スパッタリングターゲット/粉末/ワイヤー/ブロック/顆粒

フッ化ナトリウム (NaF) 材料をお探しですか?当社は、さまざまな純度、形状、サイズのカスタマイズされたソリューションを手頃な価格で提供します。スパッタリング ターゲット、コーティング材料、粉末などを検索します。今すぐご連絡ください。

電子ビーム蒸着コーティング導電性窒化ホウ素るつぼ(BNるつぼ)

電子ビーム蒸着コーティング導電性窒化ホウ素るつぼ(BNるつぼ)

高温および熱サイクル性能を備えた、電子ビーム蒸着コーティング用の高純度で滑らかな導電性窒化ホウ素るつぼです。

実験室用光学超透明ガラスシート K9 / B270 / BK7

実験室用光学超透明ガラスシート K9 / B270 / BK7

光学ガラスは、他の種類のガラスと多くの特性を共有していますが、光学用途にとって重要な特性を強化する特定の化学物質を使用して製造されます。

窒化ホウ素(BN)セラミックプレート

窒化ホウ素(BN)セラミックプレート

窒化ホウ素 (BN) セラミック プレートは、湿らせるためにアルミニウム水を使用せず、溶融アルミニウム、マグネシウム、亜鉛合金およびそのスラグと直接接触する材料の表面を包括的に保護します。

窒化ホウ素 (BN) セラミックス - 導電性複合材料

窒化ホウ素 (BN) セラミックス - 導電性複合材料

窒化ホウ素自体の特性により、誘電率、誘電損失が非常に小さいため、理想的な電気絶縁材料です。

硫化亜鉛(ZnS)ウィンドウ/ソルトシート

硫化亜鉛(ZnS)ウィンドウ/ソルトシート

光学硫化亜鉛 (ZnS) ウィンドウは、8 ~ 14 ミクロンの優れた IR 透過範囲を備えています。過酷な環境に対する優れた機械的強度と化学的不活性性 (ZnSe ウィンドウよりも硬い)

赤外線シリコン/高抵抗シリコン/単結晶シリコンレンズ

赤外線シリコン/高抵抗シリコン/単結晶シリコンレンズ

シリコン (Si) は、約 1 μm ~ 6 μm の近赤外 (NIR) 範囲での用途に最も耐久性のある鉱物材料および光学材料の 1 つとして広く知られています。

関連記事

固体サンプルの XRF ペレット化のヒントとコツ

固体サンプルの XRF ペレット化のヒントとコツ

蛍光 X 線 (XRF) 分析は、固体、液体、および粉末サンプルの元素組成を決定するために使用される非破壊分析手法です。

詳細を見る
XRF 分析用のサンプルを準備するためのガイド

XRF 分析用のサンプルを準備するためのガイド

XRF 分析用にサンプルを準備するにはさまざまな方法があります。方法の選択は、結果を得るまでにかかる時間と分析のコストにも影響します。

詳細を見る
FTIR ペレットプレスで分光分析に革命を起こす

FTIR ペレットプレスで分光分析に革命を起こす

FTIR (フーリエ変換赤外) 分光法は、さまざまな材料の化学組成を分析するために広く使用されている技術です。この方法は、他の技術では分析が難しいサンプルに特に役立ちます。

詳細を見る
XRFペレタイジングの希釈比 最適なバランスを見つける

XRFペレタイジングの希釈比 最適なバランスを見つける

蛍光X線分析は、研究者や科学者がさまざまな物質の元素組成を測定するために使用する強力な技術です。蛍光X線分析で最も重要なステップの1つは、分析用のサンプルの前処理で、多くの場合、粉末サンプルからペレットを作成します。

詳細を見る
MPCVD単結晶ダイヤモンドの半導体および光学ディスプレイ分野への応用

MPCVD単結晶ダイヤモンドの半導体および光学ディスプレイ分野への応用

本稿では、MPCVD単結晶ダイヤモンドの半導体および光学ディスプレイ分野への応用について論じ、その優れた特性と様々な産業への潜在的な影響に焦点を当てる。

詳細を見る
透過型電子顕微鏡のサンプル前処理:基礎から実践スキルまで

透過型電子顕微鏡のサンプル前処理:基礎から実践スキルまで

TEMサンプルの前処理に関する詳細なガイドで、洗浄、研磨、固定、被覆の技術を網羅しています。

詳細を見る