製品 ラボ用消耗品と材料 光学材料 赤外線透過コーティングサファイアシート/サファイア基板/サファイアウィンドウ
赤外線透過コーティングサファイアシート/サファイア基板/サファイアウィンドウ

光学材料

赤外線透過コーティングサファイアシート/サファイア基板/サファイアウィンドウ

商品番号 : KTOM-ISS

価格は以下に基づいて変動します 仕様とカスタマイズ


製品のチックネス
0.1~10mm
半透明バンド
185~5000nm
表面仕上げ
60/40(両面研磨)
ISO & CE icon

配送:

お問い合わせ 配送詳細を確認してください オンタイムディスパッチ保証.

サファイア基板の説明

サファイア基板は、紫外 (200 nm 以上) または赤外 (5 μm 以下) の範囲で光透過が必要な場合に、ガラス基板の代わりに使用するのに最適です。低温光学測定にもサファイア基板の高い熱伝導率の恩恵があり、最大 2300 K の高温環境でも使用できます。

詳細と部品

耐食性サファイアガラス基板
耐食性サファイアガラス基板
耐高温サファイアガラス
耐高温サファイアガラス
光透過性に優れたコーティングされたサファイア基板
光透過性に優れたコーティングされたサファイア基板
高硬度サファイア基板
高硬度サファイア基板
職人技
職人技

カスタマイズサービスの提供

当社は幅広い標準サファイア基板サイズを提供しており、お客様の特定の要件を満たすさまざまなオプションを確保しています。当社の通常の製品以外に独自のサイズ要件がある場合は、提供されたサイズに基づいてカスタマイズされたサービスを提供できます。この個別のアプローチにより、お客様の仕様を正確に満たし、サファイア基板のニーズに合わせた真のオーダーメイドのソリューションを提供できるようになります。

サファイアガラスの特性

  • 化学的特性: 酸化アルミニウム (Al2O3) の結晶形であるサファイアは、フッ化水素酸を含む酸およびアルカリに対して顕著な耐薬品性を示します。その六方格子構造は、Al3+ カチオンと O2- アニオンで構成されています。
  • 機械的特性: サファイアはモース硬度が 9 で、ダイヤモンドに次いで 2 番目で、耐傷性に優れています。これに対し、ガラスの硬度は約 5.5 です。
  • 光学特性: サファイアは複屈折がありますが、C 面に沿って正確にカットされており、法線入射光の偏光に依存する複屈折を排除します。 200 nm ~ 5 μm の波長に対して優れた透明性を示し、UV および近/中 IR アプリケーションに最適です。可視スペクトルでは、サファイアの屈折率は約 1.76 です。
  • 熱特性: サファイアは室温で約 40 W/mK の高い熱伝導率を示し、これはガラスのほぼ 50 倍、ステンレス鋼の 2 倍です。温度が下がると熱伝導率が約 10000 W/mK まで増加するため、低温での光学測定に最適です。また、最大 2300 K の高温環境にも耐えることができます。当社のサファイア基板は光学品質に研磨されており、ガラス基板と比較して RMS 粗さが大幅に低くなります。

カスタマイズされたサービスを提供する

革新的で最先端の溶解プロセスの導入を通じて、当社は高品質のガラス製品の開発と製造における広範な専門知識を獲得し、幅広い光学製品を提供しています。 さまざまな商業、産業、科学用途向けのガラス製品。 同社は、光学ガラスの原ガラスから切断部品、完成品まで、さまざまな仕様を提供し、顧客と緊密に協力して、顧客のニーズに応じて製品をカスタマイズします。 品質に対する揺るぎない取り組みにより、当社はお客様の要件に合わせた完璧なソリューションを確実にお届けします。

さらにお見積りが必要な場合は、お問い合わせください。

FAQ

ガラス基板の主な種類は?

ガラス基板の主な種類には、ソーダ石灰ガラス、サファイア、ホウ素アルミノシリケートガラス、光学石英ガラス、K9ガラス、CaF2基板、フッ化マグネシウム結晶基板、シリコンなどがある。

光学水晶板とは

光学水晶板は、高純度の水晶から作られた透明で耐久性のある部品です。耐熱性、耐薬品性に優れ、様々な産業分野で広く使用されています。

物理蒸着 (PVD) とは何ですか?

物理蒸着 (PVD) は、固体材料を真空中で蒸発させ、それを基板上に蒸着することによって薄膜を蒸着する技術です。 PVD コーティングは耐久性、耐傷性、耐食性に優れているため、太陽電池から半導体に至るまで、さまざまな用途に最適です。 PVD は、高温に耐えられる薄膜も作成します。ただし、PVD はコストが高くなる可能性があり、コストは使用する方法によって異なります。たとえば、蒸着は低コストの PVD 法ですが、イオン ビーム スパッタリングはかなり高価です。一方、マグネトロン スパッタリングは高価ですが、より拡張性があります。

オプティカルウィンドウとは何ですか?

オプティカルウィンドウは、光の特性を歪めることなく透過させるために使用される透明な部品です。高出力赤外レーザーシステム、マイクロ波ウインドウ、広帯域赤外透過性と熱伝導性を必要とする環境など、様々な用途で使用されています。

ソーダ石灰ガラスは何に使われているのですか?

ソーダ石灰ガラスは、その均一な厚みと非常に平坦な表面から、様々な用途の薄膜・厚膜蒸着用絶縁基板として広く使用されています。

光学石英板の主な種類は?

光学石英板の主な種類は、JGS1、JGS2、JGS3石英板、耐高温光学石英ガラス板、K9石英板、光学超透明ガラス板、ダイヤモンド光学窓、MgF2フッ化マグネシウム結晶基板、赤外シリコンレンズ、石英電解セル、フッ化バリウム基板、CaF2基板、赤外線透過コーティングサファイア板、ITO/FTOガラス収納ラック、フロートソーダ石灰光学ガラス、ホウケイ酸ガラス、グラッシーカーボン板、高純度二酸化ケイ素材料など。

光学ガラスは何に使われているのですか?

光学ガラスは、その並外れたレベルの透明性と耐久性により、分析機器や医療機器用のレンズなど、さまざまな光学用途に最も一般的に使用される材料です。写真レンズ。光学システムおよび機器用の窓。

マグネトロンスパッタリングとは何ですか?

マグネトロン スパッタリングは、密着性に優れた非常に緻密な膜を生成するために使用されるプラズマ ベースのコーティング技術であり、融点が高く蒸発できない材料にコーティングを作成するための多用途の方法です。この方法では、ターゲットの表面近くに磁気的に閉じ込められたプラズマが生成され、そこで正に帯電した高エネルギーイオンが負に帯電したターゲット材料と衝突し、原子が放出または「スパッタリング」されます。これらの放出された原子は、基板またはウェーハ上に堆積され、目的のコーティングが作成されます。

光学窓にはどのような種類がありますか?

光学窓には、ダイヤモンド窓、CaF2窓、MgF2窓、シリコン窓、石英ガラス板、硫化亜鉛(ZnS)窓、フッ化バリウム(BaF2)窓、セレン化亜鉛(ZnSe)窓、サファイア窓などの種類があります。それぞれの種類は、異なる用途に適したユニークな特性を持っています。

薄膜を堆積するにはどのような方法が使用されますか?

薄膜の堆積に使用される主な方法は、化学蒸着 (CVD) と物理蒸着 (PVD) の 2 つです。 CVD では、反応ガスをチャンバーに導入し、そこでウェーハ表面で反応して固体膜を形成します。 PVD には化学反応は含まれません。代わりに、構成材料の蒸気がチャンバー内で生成され、ウェーハ表面で凝縮して固体膜を形成します。一般的な PVD の種類には、蒸着堆積とスパッタリング堆積が含まれます。蒸着技術には、熱蒸着、電子ビーム蒸着、誘導加熱の 3 種類があります。

サファイア基板を使用する利点は何ですか?

サファイア基板は、比類のない化学的、光学的、物理的特性を提供します。熱衝撃、高温、砂による侵食、水に対する耐性が高く、要求の厳しい用途に最適です。

光学石英プレートの用途は?

光学石英板は、電気通信、天文学、実験室、高出力赤外レーザーやマイクロ波ウインドウ、紫外・赤外分光、近赤外域用途、電気化学実験など、様々な用途に使用されています。

光学ガラスの成分は何ですか?

すべてのガラスの約 95% は、二酸化ケイ素 (シリカ)、Na2O (ソーダ)、CaO (石灰) を含む「ソーダ石灰」タイプです。クラウン ガラスはソーダ石灰シリカ複合材料です。

なぜマグネトロンスパッタリングなのか?

マグネトロンスパッタリングは、蒸着法を超えて膜厚や膜密度の精度が高いため、好まれています。この技術は、特定の光学的または電気的特性を持つ金属または絶縁コーティングを作成するのに特に適しています。さらに、マグネトロン スパッタリング システムは複数のマグネトロン ソースを使用して構成できます。

光学窓の仕組み

オプティカル・ウィンドウは、吸収、反射、散乱を最小限に抑えながら光を通すことで機能します。波長や強度などの光の特性を維持するように設計されており、クリアで正確な透過を保証します。

薄膜形成装置とは何ですか?

薄膜堆積装置とは、基板材料上に薄膜コーティングを作成および堆積するために使用されるツールおよび方法を指します。これらのコーティングはさまざまな材料で作ることができ、基材の性能を向上または変更できるさまざまな特性を備えています。物理蒸着 (PVD) は、固体材料を真空中で蒸発させ、それを基板上に蒸着する一般的な技術です。他の方法としては、蒸着やスパッタリングなどがあります。薄膜蒸着装置は、光電子デバイス、医療用インプラント、精密光学機器などの製造に使用されます。

なぜホウ素アルミノシリケートガラスが実験用ガラス器具や調理器具に適しているのですか?

ボロアルミノシリケートガラスは熱膨張に強いため、実験用ガラス器具や調理器具など、温度変化への耐性が求められる用途に適しています。

光学石英板を使用する利点は何ですか?

光学石英プレートは、優れた耐熱性、耐薬品性、高い透明度、調整された屈折特性、レーザーダメージへの耐性、様々な環境下での安定性、様々な産業における汎用性など、いくつかの利点を備えています。

最も一般的な光学ガラスは何ですか?

IR スペクトル用の最も一般的な光学ガラスは、フッ化カルシウム、溶融シリカ、ゲルマニウム、フッ化マグネシウム、臭化カリウム、サファイア、シリコン、塩化ナトリウム、セレン化亜鉛、および硫化亜鉛です。

薄膜形成に使用される材料は何ですか?

薄膜堆積では、一般的に金属、酸化物、化合物を材料として利用しますが、それぞれに独自の長所と短所があります。金属は耐久性と堆積の容易さの点で好まれますが、比較的高価です。酸化物は耐久性が高く、高温に耐え、低温でも堆積させることができますが、脆くて加工が難しい場合があります。化合物は強度と耐久性を備え、低温で堆積でき、特定の特性を示すように調整できます。

薄膜コーティングの材料の選択は、用途の要件によって異なります。金属は熱と電気の伝導に理想的ですが、酸化物は保護を提供するのに効果的です。化合物は特定のニーズに合わせて調整できます。最終的に、特定のプロジェクトに最適な素材は、アプリケーションの特定のニーズによって異なります。

高出力赤外レーザーアプリケーションに光学窓を使用する利点は何ですか?

高出力赤外レーザーアプリケーションに使用される光学ウィンドウには、優れた広帯域赤外透過性、優れた熱伝導性、赤外スペクトルにおける低散乱性など、いくつかの利点があります。これらの特性は、レーザーシステムの性能と寿命の維持に役立ちます。

薄膜形成技術とは何ですか?

薄膜堆積技術は、厚さが数ナノメートルから 100 マイクロメートルの範囲の非常に薄い材料膜を基板表面または以前に堆積したコーティング上に塗布するプロセスです。この技術は、半導体、光学デバイス、ソーラーパネル、CD、ディスクドライブなどの最新のエレクトロニクスの製造に使用されています。薄膜堆積の 2 つの大きなカテゴリは、化学変化によって化学的に堆積されたコーティングが生成される化学堆積と、材料がソースから放出され、機械的、電気機械的、または熱力学的プロセスを使用して基板上に堆積される物理蒸着です。

光学石英ガラス板の用途は?

光学石英ガラス板は、その卓越した透明度と調整された屈折特性により、電気通信、天文学、光学技術を含む様々な分野で精密な光操作に使用されています。

光学石英板はどのように製造されるのですか?

光学石英プレートは通常、高純度水晶から製造されます。その種類によっては、光学特性を向上させるために、コーティングや精密な仕様を満たすための成形など、様々な加工が施されます。

最適な薄膜成膜を実現するにはどのような方法がありますか?

望ましい特性を備えた薄膜を実現するには、高品質のスパッタリングターゲットと蒸着材料が不可欠です。これらの材料の品質は、純度、粒子サイズ、表面状態などのさまざまな要因によって影響されます。

不純物は得られる薄膜に欠陥を引き起こす可能性があるため、スパッタリングターゲットまたは蒸着材料の純度は重要な役割を果たします。粒子サイズも薄膜の品質に影響を与え、粒子が大きくなると膜の特性が低下します。さらに、表面が粗いとフィルムに欠陥が生じる可能性があるため、表面状態も非常に重要です。

最高品質のスパッタリングターゲットと蒸着材料を得るには、高純度、小さな粒径、滑らかな表面を備えた材料を選択することが重要です。

薄膜蒸着の用途

酸化亜鉛系薄膜

ZnO 薄膜は、熱、光学、磁気、電気などのさまざまな産業で応用されていますが、主な用途はコーティングと半導体デバイスです。

薄膜抵抗器

薄膜抵抗器は現代のテクノロジーにとって極めて重要であり、ラジオ受信機、回路基板、コンピューター、高周波デバイス、モニター、ワイヤレス ルーター、Bluetooth モジュール、および携帯電話受信機で使用されています。

磁性薄膜

磁性薄膜は、エレクトロニクス、データストレージ、無線周波数識別、マイクロ波装置、ディスプレイ、回路基板、オプトエレクトロニクスの主要コンポーネントとして使用されています。

光学薄膜

光学コーティングとオプトエレクトロニクスは、光学薄膜の標準的な用途です。分子線エピタキシーでは、光電子薄膜デバイス (半導体) を製造できます。この場合、エピタキシャル膜は一度に 1 原子ずつ基板上に堆積されます。

高分子薄膜

ポリマー薄膜は、メモリチップ、太陽電池、電子デバイスに使用されます。化学蒸着技術 (CVD) により、適合性やコーティングの厚さを含むポリマー フィルム コーティングを正確に制御できます。

薄膜電池

薄膜電池は埋め込み型医療機器などの電子機器に電力を供給しており、リチウムイオン電池は薄膜の使用により大幅に進歩しました。

薄膜コーティング

薄膜コーティングは、さまざまな産業や技術分野におけるターゲット材料の化学的および機械的特性を強化します。一般的な例としては、反射防止コーティング、紫外線防止または赤外線防止コーティング、傷防止コーティング、レンズの偏光などが挙げられます。

薄膜太陽電池

薄膜太陽電池は太陽エネルギー産業にとって不可欠であり、比較的安価でクリーンな電力の生産を可能にします。太陽光発電システムと熱エネルギーは、適用可能な 2 つの主要な技術です。

なぜCaF2ウインドウは特定の光学用途に好まれるのか?

CaF2ウィンドウは、その汎用性、環境安定性、レーザー損傷への耐性、200nmから約7μmまでの高い安定した透過率により、光学用途に好まれています。これらの特性により、幅広い光学用途に適しています。

K9ガラスの特徴は?

K9クリスタルとも呼ばれるK9ガラスは、光学用ホウケイ酸クラウンガラスの一種で、その卓越した光学特性から様々な光学用途に適しています。

K9石英シートの特徴は?

K9水晶とも呼ばれるK9石英板は、卓越した光学特性で知られる光学用ホウケイ酸クラウンガラスの一種です。透明度が高く、屈折特性が調整されているため、光学用途に広く使用されています。

薄膜の堆積に影響を与える要因とパラメータ

堆積速度:

フィルムの製造速度(通常は厚さを時間で割った値で測定されます)は、用途に適した技術を選択するために重要です。薄膜には中程度の堆積速度で十分ですが、厚い膜には速い堆積速度が必要です。速度と正確な膜厚制御のバランスをとることが重要です。

均一:

基板全体にわたるフィルムの一貫性は均一性として知られており、通常はフィルムの厚さを指しますが、屈折率などの他の特性にも関係する場合があります。均一性の過小または過大な仕様を避けるために、アプリケーションをよく理解することが重要です。

充填能力:

充填能力またはステップカバレージは、堆積プロセスが基板のトポグラフィーをどの程度うまくカバーするかを指します。使用される堆積方法 (CVD、PVD、IBD、または ALD など) は、ステップ カバレッジと充填に大きな影響を与えます。

フィルムの特徴:

フィルムの特性は、フォトニック、光学、電子、機械、または化学に分類できるアプリケーションの要件によって異なります。ほとんどの映画は、複数のカテゴリの要件を満たす必要があります。

プロセス温度:

フィルムの特性はプロセス温度に大きく影響され、アプリケーションによって制限される場合があります。

ダメージ:

各堆積技術には、堆積される材料に損傷を与える可能性があり、フィーチャが小さいほどプロセス損傷を受けやすくなります。潜在的な損傷源には、汚染、紫外線、イオン衝撃などがあります。材料とツールの限界を理解することが重要です。

MgF2ウィンドウの特徴は?

MgF2ウィンドウは、異方性を示す正方晶から作られている点が特徴です。この特性により、単結晶として扱うことが必須である精密イメージングや信号伝送に不可欠です。

CaF2窓は何に使われるのですか?

CaF2ウィンドウは、結晶性のフッ化カルシウムで作られた光学ウィンドウです。CaF2ガラスは、汎用性が高く、環境的に安定しており、レーザーダメージに強いため、様々な光学用途に適しています。

電気通信における光学石英板の役割とは?

光学石英板は、精密な光操作、明瞭な信号伝送の確保、光学機器の性能向上のために電気通信分野で使用されています。

近赤外線(NIR)用途でのシリコンの性能は?

シリコンは近赤外(NIR)用途で非常に優れた性能を発揮し、約1μmから6μmの範囲をカバーします。シリコンは最も耐久性のある鉱物と光学材料の一つであり、近赤外用途に非常に適しています。

フッ化マグネシウム結晶基板の特性は?

フッ化マグネシウム(MgF2)は異方性を示す正方晶であるため、精密なイメージングや信号伝送を行う際には単結晶として扱う必要があります。

光学石英板はどのように実験室研究に貢献しているのでしょうか?

光学石英プレートは、耐久性、耐薬品性、精密な光学特性により、実験室での研究に不可欠です。高品質の光学部品を必要とする様々な実験やセットアップに使用されています。

耐熱石英ガラスを使用するメリットは何ですか?

高温耐性の光学石英ガラスシートは、優れた耐熱性と耐薬品性を備えています。その卓越した透明度と調整された屈折特性により、電気通信や天文学のような精密な光操作を必要とする産業で広く使用されています。

シリコンは近赤外領域で何に使われているのですか?

シリコン(Si)は、近赤外(NIR)領域(約1μm~6μm)の用途において、最も耐久性のある鉱物および光学材料の一つとして広く知られています。

なぜ硫化亜鉛(ZnS)ウィンドウは過酷な環境で好まれるのか?

硫化亜鉛(ZnS)ウィンドウは、優れた機械的強度、化学的不活性、8-14ミクロンの広い赤外透過率を持つため、過酷な環境で好まれます。これらの特性により、耐久性に優れ、過酷な条件にも耐えることができます。

ガラス振動ビーズは実験室で何に使われていますか?

実験室で一般的に使用されているガラス振動ビーズは、ゼオライトの生成を防ぐように設計された透明なガラス球で、様々な実験セットアップに役立ちます。

フッ化バリウム(BaF2)ウインドウの用途は?

BaF2ウィンドウは、その高速シンチレーション特性により、VUVや赤外分光のアプリケーションで重宝されています。その卓越した特性により、精密な分光分析に理想的な製品として求められています。
この製品に関するよくある質問をもっと見る

4.9

out of

5

Astounding! The sapphire sheet's clarity and transmission in the infrared range are beyond compare. It's a game-changer for our optical experiments.

Aurora Gucci

4.7

out of

5

The coating on this sapphire substrate is top-notch. It provides excellent corrosion resistance, making it perfect for our harsh lab environment.

Yusuf Karim

4.8

out of

5

The optical quality of this sapphire window is remarkable. It offers exceptional transmission in the UV and near/mid-IR regions, enabling precise measurements in our spectroscopy setup.

Isabella Garcia

4.6

out of

5

The durability of this sapphire substrate is impressive. It withstands high temperatures and resists scratches, ensuring longevity in our demanding research applications.

Oliver Chen

4.9

out of

5

The craftsmanship of this sapphire glass is impeccable. The polished surface and low RMS roughness provide exceptional clarity and minimize optical distortion.

Amelia Johnson

4.7

out of

5

The chemical resistance of this sapphire substrate is outstanding. It's impervious to acids and alkalis, making it ideal for our corrosive environment.

Lucas Smith

4.8

out of

5

The optical properties of this sapphire window are remarkable. The high refractive index and low birefringence ensure accurate and reliable measurements in our optical setups.

Harper Li

4.6

out of

5

The thermal conductivity of this sapphire substrate is exceptional. It efficiently dissipates heat, preventing thermal distortions and ensuring stable performance in our high-power laser applications.

Jackson Kim

4.9

out of

5

The clarity of this sapphire sheet is breathtaking. It allows for pristine image transmission in our advanced imaging systems.

Ava White

4.7

out of

5

The scratch resistance of this sapphire substrate is remarkable. It maintains its optical integrity even under harsh conditions, ensuring long-lasting performance in our demanding applications.

Liam Brown

4.8

out of

5

The transmission quality of this sapphire window is exceptional. It minimizes signal loss and ensures accurate data acquisition in our spectroscopy experiments.

Sofia Garcia

4.6

out of

5

The high temperature resistance of this sapphire substrate is impressive. It withstands extreme temperatures without compromising its structural integrity, making it ideal for our high-energy laser applications.

Ethan Jones

4.9

out of

5

The low RMS roughness of this sapphire glass is remarkable. It minimizes surface scattering and ensures pristine image quality in our advanced microscopy setup.

Isabella Garcia

4.7

out of

5

The fast delivery of this sapphire substrate was a lifesaver. It arrived just in time for our crucial experiment, preventing any delays in our research.

Oliver Chen

4.8

out of

5

The value for money of this sapphire window is unbeatable. Its exceptional optical properties and durability make it worth every penny.

Amelia Johnson

4.6

out of

5

The technological advancement embodied in this sapphire substrate is remarkable. It pushes the boundaries of optical performance and opens up new possibilities for our research.

Lucas Smith

PDF - 赤外線透過コーティングサファイアシート/サファイア基板/サファイアウィンドウ

ダウンロード

のカタログ 光学材料

ダウンロード

のカタログ ガラス基板

ダウンロード

のカタログ 光学石英板

ダウンロード

のカタログ 光学材料

ダウンロード

のカタログ 薄膜蒸着材料

ダウンロード

のカタログ オプティカルウィンドウ

ダウンロード

のカタログ 薄膜形成装置

ダウンロード

引用を要求

弊社の専門チームが 1 営業日以内にご返信いたします。 お気軽にお問い合わせ下さい!

関連製品

光学窓

光学窓

ダイヤモンド光学ウィンドウ: 優れた広帯域赤外線透過性、優れた熱伝導性、赤外線散乱の低さ、高出力 IR レーザーおよびマイクロ波ウィンドウ用途向け。

赤外線シリコン/高抵抗シリコン/単結晶シリコンレンズ

赤外線シリコン/高抵抗シリコン/単結晶シリコンレンズ

シリコン (Si) は、約 1 μm ~ 6 μm の近赤外 (NIR) 範囲での用途に最も耐久性のある鉱物材料および光学材料の 1 つとして広く知られています。

セレン化亜鉛(ZnSe)ウィンドウ/基板/光学レンズ

セレン化亜鉛(ZnSe)ウィンドウ/基板/光学レンズ

セレン化亜鉛は、亜鉛蒸気と H2Se ガスを合成することによって形成され、グラファイト サセプター上にシート状の堆積物が形成されます。

MgF2フッ化マグネシウム結晶基板/窓/塩板

MgF2フッ化マグネシウム結晶基板/窓/塩板

フッ化マグネシウム (MgF2) は異方性を示す正方晶系結晶であるため、高精度のイメージングや信号伝送を行う場合には単結晶として扱うことが不可欠です。

CaF2基板/ウィンドウ/レンズ

CaF2基板/ウィンドウ/レンズ

CaF2 ウィンドウは、結晶性フッ化カルシウムで作られた光学ウィンドウです。これらのウィンドウは多用途で、環境的に安定しており、レーザー損傷に対して耐性があり、200 nm から約 7 μm までの高い安定した透過率を示します。

硫化亜鉛(ZnS)ウィンドウ/ソルトシート

硫化亜鉛(ZnS)ウィンドウ/ソルトシート

光学硫化亜鉛 (ZnS) ウィンドウは、8 ~ 14 ミクロンの優れた IR 透過範囲を備えています。過酷な環境に対する優れた機械的強度と化学的不活性性 (ZnSe ウィンドウよりも硬い)

熱管理用のCVDダイヤモンド

熱管理用のCVDダイヤモンド

熱管理用の CVD ダイヤモンド: 熱伝導率が最大 2000 W/mK の高品質ダイヤモンドで、ヒート スプレッダー、レーザー ダイオード、GaN on Diamond (GOD) アプリケーションに最適です。

波長400~700nm 反射防止・ARコーティングガラス

波長400~700nm 反射防止・ARコーティングガラス

光学面にはARコーティングを施し、反射を軽減します。それらは、単一層であることも、弱め合う干渉によって反射光を最小限に抑えるように設計された複数の層であることもできます。

光学石英板 JGS1 / JGS2 / JGS3

光学石英板 JGS1 / JGS2 / JGS3

石英板は透明で耐久性があり、さまざまな業界で広く使用されている多用途部品です。高純度水晶を使用しており、耐熱性、耐薬品性に優れています。

片面・両面コートガラスシート/K9石英シート

片面・両面コートガラスシート/K9石英シート

K9 ガラスは、K9 クリスタルとしても知られ、その優れた光学特性で知られる光学用ホウケイ酸クラウン ガラスの一種です。

実験室用光学超透明ガラスシート K9 / B270 / BK7

実験室用光学超透明ガラスシート K9 / B270 / BK7

光学ガラスは、他の種類のガラスと多くの特性を共有していますが、光学用途にとって重要な特性を強化する特定の化学物質を使用して製造されます。

耐高温光学石英ガラスシート

耐高温光学石英ガラスシート

電気通信、天文学、その他の分野で正確な光を操作するための光学ガラス シートの力を発見してください。卓越した透明度とカスタマイズされた屈折特性により、光学技術の進歩を解き放ちます。

炭化ケイ素 (SIC) セラミック シート フラット/波形ヒート シンク

炭化ケイ素 (SIC) セラミック シート フラット/波形ヒート シンク

炭化ケイ素(sic)セラミックヒートシンクは、電磁波を発生しないだけでなく、電磁波を遮断し、電磁波の一部を吸収することができます。

無アルカリ・ホウアルミノケイ酸ガラス

無アルカリ・ホウアルミノケイ酸ガラス

ボロアルミノケイ酸ガラスは熱膨張に対する耐性が高いため、実験用ガラス器具や調理器具など、温度変化への耐性が必要な用途に適しています。

CVDダイヤモンドコーティング

CVDダイヤモンドコーティング

CVD ダイヤモンドコーティング: 切削工具、摩擦、音響用途向けの優れた熱伝導性、結晶品質、接着力

窒化ケイ素(SiNi)の陶磁器シートの精密機械化の陶磁器

窒化ケイ素(SiNi)の陶磁器シートの精密機械化の陶磁器

窒化ケイ素板は、高温で均一な性能を発揮するため、冶金産業でよく使用されるセラミック材料である。

PTFE導電性ガラス基板洗浄ラック

PTFE導電性ガラス基板洗浄ラック

PTFE 導電性ガラス基板洗浄ラックは、洗浄プロセス中の効率的で汚染のない取り扱いを保証するために、正方形の太陽電池シリコン ウェーハのキャリアとして使用されます。

CVDボロンドープダイヤモンド

CVDボロンドープダイヤモンド

CVD ホウ素ドープ ダイヤモンド: エレクトロニクス、光学、センシング、および量子技術の用途に合わせて調整された導電性、光学的透明性、優れた熱特性を可能にする多用途の材料です。

炭化ケイ素(SIC)耐摩耗セラミックシート

炭化ケイ素(SIC)耐摩耗セラミックシート

炭化ケイ素セラミックシートは、高純度の炭化ケイ素と超微粉末から構成され、振動成形と高温焼結によって形成される。

アルミナジルコニア 異形部品加工 オーダーメイドセラミックプレート

アルミナジルコニア 異形部品加工 オーダーメイドセラミックプレート

アルミナセラミックスは優れた導電性、機械的強度、高温耐性を備え、ジルコニアセラミックスは高強度、高靭性で知られ広く使用されています。

炭化ケイ素 (SIC) セラミック プレート

炭化ケイ素 (SIC) セラミック プレート

窒化ケイ素 (sic) セラミックは、焼結中に収縮しない無機材料セラミックです。高強度、低密度、耐高温性の共有結合化合物です。

関連記事

光学石英プレート:用途、仕様、使用法の総合ガイド

光学石英プレート:用途、仕様、使用法の総合ガイド

光学石英プレートの多様性を発見し、様々な産業における用途、主要仕様、ガラスとの差別化要因を探る。紫外線透過、精密光学など、その用途について理解を深めてください。

詳細を見る
光学石英板の優れた特性と用途を解き明かす

光学石英板の優れた特性と用途を解き明かす

優れた紫外線透過率、熱安定性、レンズ、照明器具、半導体製造への使用など、光学石英プレートの驚くべき特性と多様な用途をご覧ください。

詳細を見る
光学水晶板のパワーを解き放つ:用途と利点

光学水晶板のパワーを解き放つ:用途と利点

光学石英プレートの世界に入り込み、その卓越した特性、光学、エレクトロニクスなどの産業における多様な用途を探求してください。低熱膨張、高温耐性、正確な光学的透明度など、その利点をご覧ください。

詳細を見る
FTIR ペレットプレスで分光分析に革命を起こす

FTIR ペレットプレスで分光分析に革命を起こす

FTIR (フーリエ変換赤外) 分光法は、さまざまな材料の化学組成を分析するために広く使用されている技術です。この方法は、他の技術では分析が難しいサンプルに特に役立ちます。

詳細を見る
フレキシブル基板への蒸発コーティングに関する考察

フレキシブル基板への蒸発コーティングに関する考察

フレキシブル素材への蒸発コーティングを成功させ、品質と性能を確保するための重要な要素。

詳細を見る
酸化ケイ素蒸着膜の色調制御と応用

酸化ケイ素蒸着膜の色調制御と応用

酸化シリコン薄膜のカラーバリエーション、制御方法、実用化を探る。

詳細を見る
化学気相成長法によるグラフェンの調製と転写技術

化学気相成長法によるグラフェンの調製と転写技術

本稿では、グラフェンの調製法について、CVD技術、その転写技術、将来の展望を中心に概説する。

詳細を見る
建築用ガラスへの真空コーティングの応用

建築用ガラスへの真空コーティングの応用

建築用ガラスへの真空コーティングの方法と利点について、エネルギー効率、美観、耐久性に焦点を当てながら詳しく紹介。

詳細を見る
化学気相成長(CVD)薄膜形成技術

化学気相成長(CVD)薄膜形成技術

CVD技術の概要、原理、種類、用途、プロセス特性、利点。

詳細を見る