テーマ ガラス基板

ガラス基板

私たちのガラス基板は、研究室やそれ以外の場所での精度を高めるために設計されています。ソーダ石灰光学ガラスから耐高温石英まで、各製品は光学技術の厳しい基準を満たすように設計されています。サファイアシート、ボロアルミノシリケートガラス、光学石英プレートなど、研究・実験をより充実させるために作られた当社の各種基板をご覧ください。


ガラス基板の比類なき品質

光学技術の領域では、基板の品質がプロジェクトの成否を左右します。当社のガラス基板は、様々な用途で比類のない性能を発揮するよう、細心の注意を払って作られています。電気通信、天文学、研究所研究など、どのような分野においても、私たちの製品はお客様のニーズにお応えします。

ソーダ石灰光学ガラス

ソーダ石灰光学ガラスは、その卓越した平坦性と均一な厚みで研究者に愛用されています。溶融錫の上に溶融ガラスを浮かべて作られるこの方法は、薄膜や厚膜の蒸着に理想的な滑らかで完璧な表面を保証します。その多用途性により、多くの光学用途に使用されています。

サファイア基板

サファイア基板は、その並外れた化学的、光学的、物理的特性で知られています。サファイア基板は、熱衝撃、高温、砂による侵食、水に強く、多くの高性能光学システムの基幹となっています。その耐久性と透明性は、要求の厳しい環境において不可欠なものとなっています。

ホウ素アルミノシリケートガラス

ホウ素アルミノシリケートガラスは熱膨張に強いことで知られており、様々な温度下で安定性を必要とする用途に最適です。実験用ガラス器具や調理器具によく使用され、その汎用性と信頼性を証明しています。

光学石英ガラス

光学石英ガラス板は、様々な分野で精密な光の操作に不可欠です。電気通信から天文学に至るまで、これらのシートは卓越した透明度と調整された屈折特性を提供します。高純度で耐熱性に優れているため、高度な光学技術に適しています。

K9石英シート

K9クリスタルとしても知られるK9ガラスは、光学用ホウケイ酸クラウンガラスの一種です。卓越した光学特性で有名なK9石英シートは、実験室から工業用光学部品まで幅広い用途で使用されています。その耐久性と光学的透明性は、他とは一線を画しています。

フッ化カルシウム基板

フッ化カルシウム(CaF2)ウインドウは、汎用性が高く、環境的に安定しており、レーザーダメージに強く、200nmから約7μmまでの高い安定した透過率を示します。これらの特性により、精密イメージングや信号伝送アプリケーションに最適です。

フッ化マグネシウム結晶基板

フッ化マグネシウム(MgF2)は、異方性を示す正方晶結晶であり、イメージングや信号伝送における単結晶の精度を高める上で極めて重要です。そのユニークな特性は、高度な光学システムにおける高品質な結果を保証します。

ガラス状カーボンシート- RVC

当社のグラッシー・カーボン・シート- RVCは実験用途に最適で、研究を新たな高みへと導く高品質の素材を提供します。その耐久性と性能は研究者の間で人気です。

シリコンレンズ

シリコン(Si)は、特に近赤外(NIR)領域での用途において、最も耐久性のある鉱物および光学材料の一つです。当社のシリコンレンズは、光学技術の厳しい基準を満たすように設計されており、信頼性の高い性能を保証します。

ガラス振動ビーズ

実験室で一般的に使用されているガラス振動ビーズは、ゼオライトの生成を防ぐために設計された透明なガラス球です。その精度と有効性から、多くの研究プロジェクトで不可欠なツールとなっています。

Kintek Solutionでは、お客様のニーズに合わせてカスタマイズされたソリューションを提供できることを誇りとしています。当社の専門家チームは最高品質のガラス基板を提供することに専念し、お客様のプロジェクトを成功に導きます。詳細情報または具体的な要件については、以下までお問い合わせください。お問い合わせ.私たちは、私たちのプレミアムガラス基板でお客様の目標達成をお手伝いできることを楽しみにしています。

FAQ

ガラス基板の主な種類は?

ガラス基板の主な種類には、ソーダ石灰ガラス、サファイア、ホウ素アルミノシリケートガラス、光学石英ガラス、K9ガラス、CaF2基板、フッ化マグネシウム結晶基板、シリコンなどがある。

ソーダ石灰ガラスは何に使われているのですか?

ソーダ石灰ガラスは、その均一な厚みと非常に平坦な表面から、様々な用途の薄膜・厚膜蒸着用絶縁基板として広く使用されています。

サファイア基板を使用する利点は何ですか?

サファイア基板は、比類のない化学的、光学的、物理的特性を提供します。熱衝撃、高温、砂による侵食、水に対する耐性が高く、要求の厳しい用途に最適です。

なぜホウ素アルミノシリケートガラスが実験用ガラス器具や調理器具に適しているのですか?

ボロアルミノシリケートガラスは熱膨張に強いため、実験用ガラス器具や調理器具など、温度変化への耐性が求められる用途に適しています。

光学石英ガラス板の用途は?

光学石英ガラス板は、その卓越した透明度と調整された屈折特性により、電気通信、天文学、光学技術を含む様々な分野で精密な光操作に使用されています。

K9ガラスの特徴は?

K9クリスタルとも呼ばれるK9ガラスは、光学用ホウケイ酸クラウンガラスの一種で、その卓越した光学特性から様々な光学用途に適しています。

CaF2窓は何に使われるのですか?

CaF2ウィンドウは、結晶性のフッ化カルシウムで作られた光学ウィンドウです。CaF2ガラスは、汎用性が高く、環境的に安定しており、レーザーダメージに強いため、様々な光学用途に適しています。

フッ化マグネシウム結晶基板の特性は?

フッ化マグネシウム(MgF2)は異方性を示す正方晶であるため、精密なイメージングや信号伝送を行う際には単結晶として扱う必要があります。

シリコンは近赤外領域で何に使われているのですか?

シリコン(Si)は、近赤外(NIR)領域(約1μm~6μm)の用途において、最も耐久性のある鉱物および光学材料の一つとして広く知られています。

ガラス振動ビーズは実験室で何に使われていますか?

実験室で一般的に使用されているガラス振動ビーズは、ゼオライトの生成を防ぐように設計された透明なガラス球で、様々な実験セットアップに役立ちます。

引用を要求

弊社の専門チームが 1 営業日以内にご返信いたします。 お気軽にお問い合わせ下さい!


関連記事

密閉構造のアーキテクチャ:超密閉電解セル用材料の選定

密閉構造のアーキテクチャ:超密閉電解セル用材料の選定

容器が実験を定義します。ホウケイ酸ガラス、石英、PTFE間のエンジニアリング上のトレードオフを検討し、正確な電気化学データを保証します。

続きを読む
目に見えない変数:セルメンテナンスがいかに電気化学の真実を定義するか

目に見えない変数:セルメンテナンスがいかに電気化学の真実を定義するか

データの忠実性はシンクから始まります。電解セルの洗浄に関する体系的なアプローチと、ガラス器具の完全性が結果をどのように定義するかをご覧ください。

続きを読む
静かなる変数:材料の純度が電気化学の真実を定義する理由

静かなる変数:材料の純度が電気化学の真実を定義する理由

高精度電気化学、光電気化学、汚染制御における隠れた標準、オールクォーツ電解セルの重要性をご覧ください。

続きを読む
抵抗の芸術:電解槽に「呼吸する空間」が必要な理由

抵抗の芸術:電解槽に「呼吸する空間」が必要な理由

電解槽のショートは単なる事故ではなく、幾何学的な失敗です。電気経路を制御し、実験装置を保護する方法を学びましょう。

続きを読む
沈黙の対話:電気分解槽の制御をマスターする

沈黙の対話:電気分解槽の制御をマスターする

電気分解は精密な制御を必要とする非自発的な行為です。より安全な実験結果を得るために、電圧、電流、物理現象の相互作用を解釈することを学びましょう。

続きを読む
電圧の静かな幾何学:電気分解の限界を尊重する

電圧の静かな幾何学:電気分解の限界を尊重する

電気分解は厳格な電気的境界に依存しています。定格電流と電圧を超えると、非効率的になるだけでなく破壊的になる理由を学びましょう。

続きを読む
真空炉リークの診断と修正:空虚のアーキテクチャ

真空炉リークの診断と修正:空虚のアーキテクチャ

真空リーク検出の技術を習得しましょう。ヘリウムトレーサー、スモークテスト、酸素分析を使用した、ホットおよびコールド炉の体系的な戦略を学びます。

続きを読む
見えないインターフェース:単純な接続が複雑な化学を定義する理由

見えないインターフェース:単純な接続が複雑な化学を定義する理由

電気化学において、データの完全性は物理的なインターフェースにかかっています。結果を真に守る、控えめな銅テープとガスケットシールの重要性をご覧ください。

続きを読む
透明性のアーキテクチャ:石英電解における安全性と精度の習得

透明性のアーキテクチャ:石英電解における安全性と精度の習得

オール石英電解セルの使用術を習得しましょう。マイクロバブルの防止から電気的危険の管理まで、規律がいかにデータ整合性を推進するかを発見してください。

続きを読む
壊れやすい交差点:サイドウィンドウ光学電解セルの習得

壊れやすい交差点:サイドウィンドウ光学電解セルの習得

分光電気化学は、化学的、電気的、光学的危険性を繊細な容器に組み合わせています。この複雑なシステムの安全性と精度を習得する方法を説明します。

続きを読む
精度という見えないアーキテクチャ:電流が流れる前のマスタリー

精度という見えないアーキテクチャ:電流が流れる前のマスタリー

厳格な検査、洗浄、設置、電解質管理という準備の4つの柱をマスターすることで、電気化学的な精度を達成しましょう。

続きを読む
仕上げの技術:なぜ最も重要な瞬間はデータ収集後に起こるのか

仕上げの技術:なぜ最も重要な瞬間はデータ収集後に起こるのか

実験はデータが保存されたら終わりではありません。光学電解セルのシャットダウンとクリーニングに関する心理的および技術的な技術を学びましょう。

続きを読む
確実性のアーキテクチャ:多機能電解セルにおける制御の習得

確実性のアーキテクチャ:多機能電解セルにおける制御の習得

電気化学における精度は推測ではなく、ハードウェアのアーキテクチャにあります。3電極システムが真の制御のために変数をどのように分離するかを学びましょう。

続きを読む
精密性のアーキテクチャ:5ポート水浴電解セルの習得

精密性のアーキテクチャ:5ポート水浴電解セルの習得

電解セルの習得は、単なる化学ではありません。それは規律です。準備、操作、メンテナンスの体系的なアプローチを学びましょう。

続きを読む
真実の幾何学:光学電解セルのメンテナンスがデータ定義する理由

真実の幾何学:光学電解セルのメンテナンスがデータ定義する理由

優れたデータは実験だけでなく、それを格納する容器にもかかっています。サイドウィンドウ光学電解セルの厳格なメンテナンスプロトコルを学びましょう。

続きを読む
静かなインターフェース:電極劣化の克服

静かなインターフェース:電極劣化の克服

電極の故障はめったに突然起こるものではありません。それは怠慢の複利です。精度と寿命を維持する規律あるメンテナンスプロトコルを学びましょう。

続きを読む
精密の熱力学:二重層電解セルの習得

精密の熱力学:二重層電解セルの習得

精度は偶然ではありません。熱安定性と厳格なセットアップが成功を定義する二重層電解セルの体系的な操作を発見してください。

続きを読む
電解槽における信頼性の工学的設計:「静かな変数」

電解槽における信頼性の工学的設計:「静かな変数」

データの精度は装置の完全性に依存します。電解槽の維持管理に関する工学的プロトコルを学び、体系的なエラーを防ぎましょう。

続きを読む
明瞭さの静かなアーキテクチャ:サイドウィンドウ光学セルの保存

明瞭さの静かなアーキテクチャ:サイドウィンドウ光学セルの保存

光学電解セルの正確な保管手順を学びましょう。専門家によるメンテナンス戦略で、熱劣化、化学エッチング、データドリフトを防ぎます。

続きを読む
制御のアーキテクチャ:熱安定性が電気分解の成功を定義する理由

制御のアーキテクチャ:熱安定性が電気分解の成功を定義する理由

二重層水浴電解セルが熱的変動を排除し、電気化学研究における精度と再現性を保証する方法をご覧ください。

続きを読む