テーマ 補助電極

補助電極

補助電極は、ボルタンメトリー分析用の 3 電極電気化学セルで使用される電極です。これは、参照電極に大きな電流を流すことなく、電気化学セルに電流が流れる経路を提供します。補助電極に最も一般的に使用される材料は、不活性であるため白金です。ガラスフリットを使用して作用電極から隔離することができ、副生成物が主試験溶液を汚染するのを防ぎます。補助電極の役割は、作用電極の電流を制御できるようにすべての電流を流すことです。


当社は、電気化学セルのニーズに最適な補助電極ソリューションをご用意しています。当社の幅広い材料には、グラファイト、金、カーボン、プラチナなどの電気化学的に不活性な材料が含まれます。補助電極は、作用電極の電流を制御できるように、すべての電流を流す役割を果たします。当社の補助電極は高品質の素材で製造されており、電気化学測定の精度と精度を保証します。また、ほぼすべての顧客の要件を満たす、よりユニークなアプリケーション向けのオーダーメイド設計も提供しています。

補助電極の用途

  • ボルタンメトリー分析用の 3 電極電気化学セルで使用
  • 参照電極に大きな電流を流すことなく、電気化学セルに電流が流れる経路を提供します。
  • 入力電位を作用電極に印加する手段を提供します。
  • 作用電極に電流を流す目的で電解質に接続するために使用されます。
  • 作用電極が陽極として動作しているときは常に陰極として機能し、その逆も同様です。
  • すべての電流を流すため、作用電極の電流を制御できます。
  • 補助電極で生成される副生成物が主試験溶液を汚染するのを防ぐために、ガラスフリットを使用して作用電極から隔離することができます。
  • 多くの場合、金、白金、カーボンなどの電気化学的に不活性な材料から製造されます。
  • 補助電極の作成に使用される材料は、グラファイトなどの不活性材料、または金、カーボン、プラチナなどの貴金属でなければなりません。
  • 作用電極によって除去または追加された電荷のバランスを取るために使用されます。
  • 溶媒の酸化または還元が起こる溶媒ウィンドウの端で極端な電位に変動します。
  • 2つの異なる電極間の電位を参照するだけでなく、電子を供給する役割を分担します
  • 参照電極には電流を流さない

補助電極のメリット

  • 電気化学セルでの制御された電流の流れを可能にします
  • 参照電極に大きな電流を流さずに電流の経路を提供します
  • 入力電位を作用電極に適用することができます。
  • 補助電極で生成される副生成物から作用電極を隔離します。
  • 試験主液の汚染を防ぎます。
  • 作用電極が陽極として動作しているときは常に陰極として機能し、その逆も同様です。
  • 金、プラチナ、カーボンなどの電気化学的に不活性な素材で作られています。
  • 密閉型セル設計により、充電中の破壊的な圧力上昇からセルを保護します。
  • 電流を流すことで参照電極の安定性を損なうことなく、既知の参照電極に対して作用電極の電位を測定できます。

当社の補助電極は、電気化学試験のニーズに応えるコスト効率の高いソリューションです。お客様の特定の要件に合わせて、グラファイト、ゴールド、プラチナ、カーボンなどの幅広い材料を提供します。当社のカスタム設計サービスを利用すると、試験設定に合わせて電極の形状とサイズを調整し、正確で再現性のある結果を保証できます。

FAQ

補助電極の役割は何ですか?

対極とも呼ばれる補助電極は、電流が流れると予想されるボルタンメトリー分析やその他の反応のために 3 電極電気化学セルで使用される電極です。その主な機能は、参照電極に大きな電流を流すことなく、電気化学セルに電流が流れる経路を提供することです。これは、入力電位を作用電極に印加する手段を提供します。副生成物が主試験溶液を汚染するのを防ぐために、補助電極を作用電極から隔離することができる。多くの場合、金、プラチナ、カーボンなどの電気化学的に不活性な材料から製造されます。

補助電極と参照電極の違いは何ですか?

補助電極と参照電極の主な違いは、電気化学セル内での機能にあります。対極としても知られる補助電極は、検体との間の電荷移動を促進し、作用電極の電流を制御できるようにすべての電流を通すために使用されます。一方、参照電極は作用極の電位を測定・制御する際の基準となるものであり、電流は流れません。基準電極の電位は固定されていますが、補助電極の電位は変化する可能性があります。

引用を要求

弊社の専門チームが 1 営業日以内にご返信いたします。 お気軽にお問い合わせ下さい!


関連記事

真実の幾何学:電解セルが実験の成功を決定する理由

真実の幾何学:電解セルが実験の成功を決定する理由

電気化学における精度は、反応だけでなく容器にも依存します。50〜500mlの標準、三電極システム、およびセル設計の芸術を探求します。

続きを読む
精度という目に見えないアーキテクチャ:5ポート電解セルの最適化

精度という目に見えないアーキテクチャ:5ポート電解セルの最適化

5ポート水浴電解セルの使用前プロトコルをマスターしましょう。綿密な準備が再現性のある電気化学データをどのように保証するかを学びましょう。

続きを読む
見えない変数:電解セルの衛生状態がデータに影響を与える理由

見えない変数:電解セルの衛生状態がデータに影響を与える理由

適切な電解セルメンテナンスは、危険な反応を防ぎ、データの整合性を保証します。重要な「金属ブラシ禁止」ルールと安全プロトコルを学びましょう。

続きを読む
制御の幾何学:なぜ1cm²が電気化学的成功を定義するのか

制御の幾何学:なぜ1cm²が電気化学的成功を定義するのか

標準的な1cm²の反応面積と精密なOリングシールが、再現性のある正確な電気化学データを取得するための必要な基準をどのように確立するかをご覧ください。

続きを読む
精度を支える構造:5ポート電解セルの内部構造

精度を支える構造:5ポート電解セルの内部構造

電気化学における精度は、環境の制御にかかっています。5ポート水浴セルの工学的な仕組みと、それがどのように変数を排除するかを探ります。

続きを読む
真実の脆い器:電解槽のメンテナンスマニフェスト

真実の脆い器:電解槽のメンテナンスマニフェスト

データの整合性は機器の健全性に依存します。再現性のある科学のために、5ポート電解槽を維持するための心理的および技術的な芸術を発見してください。

続きを読む
電子の流れの制御:精度が三位一体を要求する理由

電子の流れの制御:精度が三位一体を要求する理由

コーティング評価における精度は、電力ではなく分離にかかっています。電気化学的ノイズを鎮める唯一の方法が、3電極システムである理由をご覧ください。

続きを読む
精密さの脆さ:5ポート電解槽の完全性をマスターする

精密さの脆さ:5ポート電解槽の完全性をマスターする

体系的な検査と適切な組み立てにより、電解槽の漏れを防ぎます。実験的なシール完全性と信頼性をマスターするためのガイド。

続きを読む
静かなる変数:材料の純度が電気化学の真実を定義する理由

静かなる変数:材料の純度が電気化学の真実を定義する理由

高精度電気化学、光電気化学、汚染制御における隠れた標準、オールクォーツ電解セルの重要性をご覧ください。

続きを読む
抵抗の芸術:電解槽に「呼吸する空間」が必要な理由

抵抗の芸術:電解槽に「呼吸する空間」が必要な理由

電解槽のショートは単なる事故ではなく、幾何学的な失敗です。電気経路を制御し、実験装置を保護する方法を学びましょう。

続きを読む
見えない変数:実験後の儀式が科学的真実を定義する理由

見えない変数:実験後の儀式が科学的真実を定義する理由

実験後の片付けは単なる雑用ではなく、制御変数です。再現性を確保するための、すべて石英製電解セルの体系的な手入れ方法を学びましょう。

続きを読む
精密の幾何学:セル容量がデータに影響を与える理由

精密の幾何学:セル容量がデータに影響を与える理由

容量だけではありません。8mlから100mlまでの電解セルの容量が、コーティング評価の安定性、コスト、精度をどのように決定するかをご覧ください。

続きを読む
静寂のアーキテクチャ:スーパーシール電解セルのマスター

静寂のアーキテクチャ:スーパーシール電解セルのマスター

優れた電気化学データは、実験が始まる前に始まります。セルの準備の4つの重要なステップ—検査、洗浄、設置、ロード—をマスターしましょう。

続きを読む
沈黙の対話:電気分解槽の制御をマスターする

沈黙の対話:電気分解槽の制御をマスターする

電気分解は精密な制御を必要とする非自発的な行為です。より安全な実験結果を得るために、電圧、電流、物理現象の相互作用を解釈することを学びましょう。

続きを読む
制御の幾何学:なぜ6.2mmが実験を定義するのか

制御の幾何学:なぜ6.2mmが実験を定義するのか

電解セルの標準的な開口部仕様をマスターしましょう。6.2mmの電極ポートから3.2mmのガスラインまで、幾何学が実験の成功をどのように決定するかを学びましょう。

続きを読む
見えない変数:電解槽検査のマスター

見えない変数:電解槽検査のマスター

電気化学における精度は、電流が流れる前に始まります。電解槽の重要な使用前点検を発見し、安全性とデータの整合性を確保しましょう。

続きを読む
光と液体のシンフォニー:サイドウィンドウ電解セルの習得

光と液体のシンフォニー:サイドウィンドウ電解セルの習得

光電気化学の成功には、化学、光学、電気の同時管理が必要です。これらの目に見えない変数をマスターする方法を学びましょう。

続きを読む
精度という名のアーキテクチャ:電解セル蓋が最も重要なインターフェースである理由

精度という名のアーキテクチャ:電解セル蓋が最も重要なインターフェースである理由

電解セル蓋には普遍的な標準規格はありませんが、Φ6.2mmとΦ3.2mmが一般的です。データ整合性にとって、正確な開口部構成がなぜ不可欠なのかを学びましょう。

続きを読む
壊れやすい交差点:サイドウィンドウ光学電解セルの習得

壊れやすい交差点:サイドウィンドウ光学電解セルの習得

分光電気化学は、化学的、電気的、光学的危険性を繊細な容器に組み合わせています。この複雑なシステムの安全性と精度を習得する方法を説明します。

続きを読む
精密性のアーキテクチャ:見えない細部が電気化学の成功を決定する理由

精密性のアーキテクチャ:見えない細部が電気化学の成功を決定する理由

電解セルの使用前検査の技術を習得しましょう。物理的な完全性から電極の純度まで、見えない細部が実験の安全性をどのように決定するかを学びましょう。

続きを読む