あなたの研究室に高品質の機器と材料を提供する、信頼できる世界規模のサプライヤー!
について
ブログ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
製品
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
会社
私たちについて
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
サービスサポート
お問い合わせ
メニュー
メニューを閉じる
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
ブログ
について
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
よくある質問 -
サンプル前処理用真空冷間埋め込み機
Ftirサンプル調製にKbrが使用されるのはなぜですか?適切なペレット技術で、鮮明で正確なIrスペクトルを得る
FTIRサンプル調製にKBrが不可欠な理由を学びましょう。KBrはIR透明性を提供し、正確な測定のためにサンプルを希釈し、固体の分析のためのペレット形成を可能にします。
酸素脱分極カソード(Odc)に実験室用ホットプレスが必要なのはなぜですか?精密成形と導電性を確保するため。
ODC成形に実験室用ホットプレスが不可欠な理由を、結合、電子輸送、構造的完全性に焦点を当てて学びましょう。
Kbrでペレットを作るのはなぜですか?明確で正確なIr分光分析結果を得るために
KBrがIR分光分析のペレットに最適である理由を発見してください:赤外光に対する透明性、物理的な展延性、そして干渉のない信頼性の高いサンプル分析。
KbrがIrで不活性である理由:透明なサンプル分析の鍵
KBrが対称的な結晶格子によりIRに対して透明である理由、そしてそれが中赤外分光法におけるサンプル調製に干渉なく理想的である理由を学びましょう。
Kbrペレットの分析準備の詳細な手順は何ですか?透明な分光ペレットのアートをマスターする
正確な分光データを得るために、混合比率から真空プレスまで、透明なKBrペレットを準備するステップバイステップの手順を学びましょう。
真空プレス機とは何ですか?完璧なラミネート加工のために大気圧を活用する
真空プレス機が、木材や複合材料などの材料の完璧なラミネート加工、化粧張り、成形のために大気圧をどのように利用するかを学びましょう。
Kbrプレス(錠剤成形機)の使い方:Ftir分析のための透明なペレット作成の技術を習得する
FTIRサンプル調製のためのKBrプレス使用に関するステップバイステップガイド。正確で高品質な赤外線スペクトルを得るために、透明でクリアなペレットを作成する方法を学びましょう。
冷間加工金属の例は何ですか?より強く、精密な部品のための主要なプロセス
圧延、引抜き、押出しなどの冷間加工金属の例を探ります。これらのプロセスが熱を使わずに強度を高め、表面仕上げを改善する方法を学びます。
Irにおけるペレット法は何のために使用されますか?正確な分析のための、透明でクリアなサンプルの作成
IR分光法におけるKBrペレット法が、不透明な固体を透明なディスクに変え、正確な透過測定と高品質なスペクトルを実現する方法を学びましょう。
金属の冷間加工の利点は何ですか?優れた強度と精度を実現
金属の冷間加工がどのように強度を高め、表面仕上げを改善し、高性能部品の寸法公差を厳しくするかをご覧ください。
コールドシンタリングとは? 新しい複合材料への低エネルギー経路
コールドシンタリングが、どのようにして圧力と溶媒を用いて低温で粉末を緻密化し、エネルギー効率の高いユニークな複合材料の製造を可能にするかを発見してください。
実験室用ホットプレスは、Latp/ポリマー複合電解質にどのように貢献しますか?高密度で高伝導性のフィルムを実現する
ホットプレスが多孔質性を排除し、界面インピーダンスを低減して、LATP/ポリマー複合電解質の性能を最適化する方法を学びましょう。
真空プレスで何が作れますか?完璧なラミネート加工と曲面成形を解き放つ
真空プレスが、均一な圧力でプロの結果をもたらす、完璧な化粧張り、曲木ラミネート、アートマウンティングなどをいかに可能にするかを発見してください。
真空プレスは何をしますか?ラミネートと複合材に完璧で均一なクランプを実現
真空プレスがどのように大気圧を利用して、ラミネート、ベニヤリング、複雑な部品の成形を完璧に行うかをご覧ください。その主な利点と用途を学びましょう。
真空プレスで何ができますか?完璧なラミネート加工とクランプを実現
真空プレスが均一な大気圧を利用して、完璧な化粧張り、曲げラミネート、複合材の成形をどのように実現するかをご覧ください。木工や複合材に最適です。
Ftirにおける試料調製法とは?試料に合った適切な技術を選択する
FTIRの主要な試料調製法であるKBr錠剤法、ATR法、反射法について学びましょう。正確で効率的な分析のために、試料の種類に合わせましょう。
Cualmn合金の真空熱間プレスにはどのような機械的利点がありますか?構造的完全性と強度を高める
コールドプレス法と比較して、真空熱間プレスが多孔質CuAlMn合金の焼結ネックと冶金結合をどのように改善するかをご覧ください。
コールドプレス中の実験室用油圧プレスはどのような役割を果たしますか? 真空熱間プレス結果の最適化
実験室用油圧プレスが、真空熱間プレス中にグリーンコンパクトを作成し、閉じ込められた空気を排出し、焼結効率を向上させる方法を学びましょう。
Tzcモリブデン合金のグリーンボディ形成にコールドアイソスタティックプレスはどのように貢献しますか? 主要な高密度化のヒント
コールドアイソスタティックプレス(CIP)が相対密度83%を達成し、TZCモリブデン合金グリーンボディの欠陥を排除する方法を学びましょう。
コールドプレス予成形に実験室用油圧プレスを使用する目的は何ですか?最適な焼結密度を達成する
実験室用油圧プレスが合金粉末から安定したグリーンコンパクトを作成し、均一な高密度化と寸法精度を確保する方法を学びましょう。
真空プレスはどのように機能するのですか?完璧なラミネート加工のために大気圧を活用する方法
真空プレスがどのようにして気圧差を利用し、完璧な化粧張り、ラミネート加工、成形のために、均一で巨大なクランプ力を加えるのかを学びましょう。
ダイヤモンド/Al-Cu混合粉末のコールドプレスには、実験用油圧プレスと鋼製金型がどのような目的で使用されますか?
油圧プレスによるダイヤモンド/Al-Cu粉末のコールドプレスが、効果的な固化を通じて高密度で欠陥のない複合材料をどのように保証するかを学びましょう。
リン酸鉄リチウム(Lifepo4)の焼結プロセスにおけるコールド等方圧プレス(Cip)の具体的な機能は何ですか? バッテリー密度を最大化する
コールド等方圧プレス(CIP)がLiFePO4の密度勾配と空隙をどのように排除し、イオン伝導率とバッテリー性能を向上させるかを学びましょう。
冷間等方圧加圧(Cip)の欠点は何ですか?寸法精度と速度における主な制約
冷間等方圧加圧(CIP)の主な欠点を探ります。これには、寸法公差の悪さ、サイクルタイムの遅さ、二次加工の必要性が含まれます。
液体窒素コールドトラップの機能とは?真空システムの感度を向上させる
液体窒素コールドトラップがクライオポンプとして機能し、バックグラウンドノイズを低減して真空システム内の微量種を検出する方法を学びましょう。
Cof前駆体の調製における実験用真空システムの機能は何ですか?純度を確保し、酸化を防ぐ
実験用真空システムがCOF前駆体を酸化や不純物からどのように保護し、高忠実度の化学合成と純度を確保するかを学びましょう。
グリセロールエーテル化における実験室用真空圧力システムの役割は何ですか?純度と収率の向上
真空システムが、精密な分離、溶媒回収、熱保護を通じてグリセロールエーテル化の後処理を最適化する方法を学びましょう。
実験室用高温油圧プレスはどのような機能を持っていますか?Hcl電解のためのMea製造の最適化
高温油圧プレスがMEA製造における精密な熱着と接触抵抗の最小化をどのように可能にするかを学びましょう。
金属は圧縮したり曲げたりできますか?弾性変形と塑性変形の決定的な違い
金属が力にどのように反応するかを発見してください。金属が圧縮に抵抗するのに曲げることができる理由、そして金属加工における延性と降伏強度の重要な役割を学びましょう。
冷間等方圧加圧の例は何ですか?複雑な部品で均一な密度を実現する
冷間等方圧加圧(CIP)が、セラミックまたは金属粉末からスパークプラグ碍子のような高密度で複雑な部品を製造するために、どのように均一な流体圧を使用するかを学びましょう。
コールドプレス機とは?熱を使わずに粉末を均一に圧縮するためのガイド
冷間静水圧成形がいかにして室温で粉末から高密度で均一な部品を作り出すか、その利点、そして熱間プレスとの使い分けについて学びましょう。
冷間静水圧プレスとは?複雑な部品の均一な粉末成形を実現
冷間静水圧プレス(CIP)がどのように均一な液体圧力を利用して、室温で高密度で複雑な形状の粉末成形体を作成するかを学びましょう。
プレス機械は何に使われますか?材料の精密な成形、接合、圧縮
木工、自動車、エレクトロニクス、製造業におけるホットプレスとコールドプレスの使用を含む、プレス機械の産業用途を発見してください。
W-Tic複合材にCip装置を使用する利点は何ですか?高密度で欠陥のない材料を実現
コールドアイソスタティックプレス(CIP)が、標準的なダイプレスと比較してW-TiCグリーンボディの密度勾配と反りをどのように解消するかをご覧ください。
8Yszでは、鋼製金型による乾式プレス後に冷間等方圧プレスが適用されるのはなぜですか?密度向上と亀裂防止
乾式プレス後の8YSZセラミックスにおける密度勾配と微細亀裂を解消し、優れた機械的強度と密度を実現する方法を学びましょう。
実験室用油圧プレスまたはコールド等方圧プレスを使用する目的は何ですか?電解質品質の最適化
油圧プレスと等方圧プレスが、ばらばらの粉末を安定した「グリーンボディ」にどのように変換し、優れた複合電解質性能を実現するかを学びましょう。
冷間静水圧プレスにはどのような種類がありますか?生産ニーズに応じたウェットバッグ方式とドライバッグ方式
ウェットバッグ方式とドライバッグ方式の冷間静水圧プレス(CIP)を比較します。生産量、部品の複雑さ、自動化の目標に最適な方法を学びましょう。
コールドCipプロセスとは何ですか?複雑な粉末部品の均一な密度を実現する
液体圧力を用いて粉末を均一で高密度な形状に圧縮し、高性能部品を製造する手法であるコールドアイソスタティックプレス(CIP)をご紹介します。
冷間静水圧プロセスとは?複雑な粉末部品で均一な密度を実現する
冷間静水圧プレス(CIP)がどのように均一な液圧を使用して、セラミックス、金属、超硬合金の粉末を緻密で複雑な形状に圧縮するかを学びましょう。
コールドアイソスタティックプレス(Cip)技術は、リチウムデンドライトの成長を抑制するのにどのように役立ちますか?バッテリーの安全性を向上させます。
CIPが電解質を緻密化し、機械的貫通強度を高めることで、リチウムデンドライトの成長を抑制する方法を学びましょう。
He-O-MiecおよびLlztoの製造において、コールド等方圧プレス(Cip)はどのように貢献しますか?専門家による高密度化ガイド
HE-O-MIECおよびLLZTOの全固体電解質において、コールド等方圧プレス(CIP)が相対密度98%を達成し、密度勾配を解消する方法を学びましょう。
C-Pscラミネーションにおけるコールドアイソスタティックプレス(Cip)の役割は何ですか?熱を使わずに太陽光発電効率を高める
室温でコールドアイソスタティックプレス(CIP)が炭素系ペロブスカイト太陽電池で高性能な電極界面をどのように形成するかを学びましょう。
硫化物系固体電解質にコールドアイソスタティックプレス(Cip)が選ばれる理由とは?イオン伝導度を最大化する
CIPが硫化物系固体電解質ペレットに不可欠である理由を学びましょう。CIPは等方圧力を提供し、空隙をなくしてイオン伝導度を高めます。
冷間静水圧プレス(Cip)の例とは何ですか?粉末成形における均一な密度を達成する
セラミックス、金属、グラファイトの一般的な冷間静水圧プレス(CIP)の例をご覧ください。CIPがいかにして高性能部品の均一な密度を保証するかを学びましょう。
Almgtiの実験室用ホットプレス圧力を20 Mpaに調整する必要があるのはなぜですか?複合材接合の最適化
AlMgTi二次成形において、熱エネルギーの不足を補い、強力な拡散接合を確保するために20 MPaの圧力がなぜ重要なのかを学びましょう。
冷間静水圧成形とは?複雑な部品の均一な密度を実現
冷間静水圧成形(CIP)がどのように均一な圧力を使用して粉末を緻密化し、優れた密度と強度を持つ大型で複雑な形状を形成するかを学びましょう。
冷間静水圧プレス(Cip)は何に使用されますか?複雑な部品で均一な密度を実現する
冷間静水圧プレス(CIP)が、先進セラミックス、金属などの部品で均一な密度をどのように実現するかをご覧ください。複雑な形状に最適です。
等方性黒鉛の製造プロセスとは?高性能で均一な材料を作成するためのガイド
CIP(冷間静水圧プレス)が、要求の厳しい用途で優れた熱的・機械的特性を実現する等方性黒鉛の均一な構造をどのように作り出すかを学びましょう。
冷間静水圧プレス(Cip)の用途は何ですか?複雑な部品の均一な密度を実現
先進セラミックス、耐火金属、および均一な密度が要求される複雑な形状における冷間静水圧プレス(CIP)の主要な用途を探ります。
冷間静水圧プレス法とは?複雑な部品で均一な密度を実現
冷間静水圧プレス(CIP)がどのように高圧液体を使用して、セラミックスや金属などの優れた性能を持つ均一な密度の部品を作成するかを学びましょう。
常圧成形(Cip)と熱間等方圧プレス(Hip)の違いとは?優れた材料のための成形と仕上げ
粉末成形のための冷間等方圧プレス(CIP)と、固体部品の緻密化のための熱間等方圧プレス(HIP)の違いを発見してください。
金属のプレス成形と焼結とは?高強度金属部品製造ガイド
プレス成形と焼結がいかにして金属粉末を溶融させることなく、固体の高強度部品に変えるのかを学びましょう。これは複雑な金属や高融点金属に理想的です。
冷間静水圧プレス(Cip)とは何ですか?複雑な粉末部品の均一な密度を実現
冷間静水圧プレス(CIP)がいかにして均一な流体圧を用いて粉末を複雑な形状に圧縮し、優れた密度と最小限の応力を実現するかを学びましょう。
焼結加圧力とは?部品の最大密度を達成するためのガイド
焼結加圧力が粉末材料を圧縮し、より低い温度とより速いサイクルで、より強く、より密度の高い部品を製造する方法を学びましょう。
Lpscl0.3F0.7電解質成形に精密な圧力制御を備えた油圧プレスを使用する利点は何ですか?
油圧プレスにおける精密な圧力制御が、密度勾配をなくし、固体電解質におけるデンドライト成長を抑制する方法をご覧ください。
Tzcモリブデン合金の熱間プレスに高真空が必要な理由とは? 密度98%達成の秘訣
TZCモリブデン合金の熱間プレスにおいて、酸化を防ぎ最大密度を確保するために0.055~0.088 Paの真空が重要である理由を学びましょう。
コールド等方圧プレスは、マイクロ硬さの均一性をどのように向上させますか? Tic10/Cu-Al2O3複合材料における一貫性の達成
コールド等方圧プレス(CIP)が密度勾配を解消し、高性能金属マトリックス複合材料のマイクロ硬さの均一性を向上させる方法をご覧ください。
ラボ用ホットプレスがPtfeとニッケルフォーム亜鉛空気電池電極に不可欠な理由は何ですか?精密な微細構造制御
ラボ用ホットプレスが、精密な熱的および機械的制御を通じて、亜鉛空気電池の重要な三相界面をどのように作成するかをご覧ください。
Li/Li3Ps4-Lii/Liバッテリー組み立て後にコールドアイソスタティックプレス(Cip)が必要なのはなぜですか?固体界面を最適化する
コールドアイソスタティックプレス(CIP)が界面抵抗を排除し、Li/Li3PS4-LiI/Li全固体電池のボイドを防ぐ方法を学びましょう。
Llztboにはなぜ冷間等方圧着(Cip)が必要なのですか? 密度と構造的完全性の向上
密度勾配をなくし、相対密度95%以上を達成するために、LLZTBO粒子のコールドアイソスタティックプレスが不可欠である理由を学びましょう。
プレス・焼結とは?効率的でニアネットシェイプ製造へのガイド
プレス・焼結が、粉末材料から溶解させることなく複雑で耐久性のある部品をどのように作り出すかをご覧ください。これは、高融点金属や大量生産に理想的です。
冷間加工の産業用途は何ですか?金属部品の優れた強度と精度を実現
圧延、引抜き、鍛造などの冷間加工プロセスが、自動車、航空宇宙、エレクトロニクス製造における金属をどのように強化するかを探ります。
セラミックスの静水圧プレスとは?均一な密度と複雑な形状を実現
CIPまたはHIP法を用いて、静水圧プレスがいかにして優れた機械的特性を持つ均一なセラミック部品を製造し、最適な密度を実現するかを学びましょう。
等方圧プレスには2つの種類がありますが、先進材料製造におけるCipとHipのどちらでしょうか?
粉末の成形および材料の緻密化における、冷間静水圧プレス(CIP)と熱間静水圧プレス(HIP)の主な違いを学びましょう。
Icvdにとって高精度真空ポンプシステムが不可欠な理由とは? 優れた膜純度と均一性を実現
高精度真空システムが平均自由行程と滞留時間を制御し、複雑なナノ多孔質構造上のiCVDコーティングの均一性を確保する方法をご覧ください。
冷間静水圧成形(Cip)の圧力はどのくらいですか?優れた密度と均一性を実現する
冷間静水圧成形(CIP)の一般的な圧力範囲(20-400 MPa)と、それがどのように均一で高密度の部品を作り出すかを発見してください。
銅グラファイト複合材の製造において、実験室用油圧プレスはどのような役割を果たしますか?グリーン強度を向上させましょう。
実験室用油圧プレスが銅複合材の機械的緻密化、粒子再配列、塑性変形をどのように促進するかを学びましょう。
焼結とプレス加工の違いは何ですか?粉末冶金プロセスのガイド
粉末冶金における焼結(熱的結合)とプレス加工(機械的圧縮)の主な違いについて、冷間プレスと熱間プレスを含む方法を学びましょう。
冷間静水圧プレス(Cip)の利点は何ですか?優れた密度と複雑な形状の実現
冷間静水圧プレス(CIP)がいかにしてセラミックスや金属に均一な密度、設計の自由度、優れた材料の完全性をもたらすかを発見してください。
冷間静水圧プレス(Cip)から作られる製品にはどのようなものがありますか?複雑な部品の均一な密度を実現する
スパッタリングターゲット、医療用インプラント、先端セラミックスなどの高性能部品を、CIP(冷間静水圧プレス)がどのようにして均一な密度で製造するかをご覧ください。
金属は圧縮しやすいですか?その驚異的な強さの背後にある物理学を発見する
金属が原子格子と高い体積弾性率のために圧縮に抵抗する理由を学びましょう。工学および材料選択に不可欠です。
コールドアイソスタティックプレス(Cip)は、Lifepo4バッテリーの性能をどのように向上させますか? 密度と導電率の向上
コールドアイソスタティックプレス(CIP)が空隙をなくし、界面インピーダンスを低下させ、LiFePO4電極と電解質の接触を最適化する方法を学びましょう。
コールド等方圧プレス(Cip)は、Yagセラミックの密度問題をどのように解決しますか?均一で高密度のグリーンボディを実現する
コールド等方圧プレス(CIP)が、焼結時の割れや変形を防ぐために、YAGセラミックの密度勾配や微細欠陥をどのように解消するかを学びましょう。
コールドアイソスタティックプレス(Cip)の用途は何ですか?優れた部品のための均一な密度を実現
コールドアイソスタティックプレス(CIP)が、先進セラミックス、金属、炭化物の均一な密度をどのように作り出し、欠陥を防いで信頼性の高い性能を実現するかをご覧ください。
冷間等方圧プレス機の費用はいくらですか?ニーズに基づいた詳細な価格内訳
冷間等方圧プレス機の費用は5万ドルから200万ドル以上です。圧力、サイズ、自動化が研究室および生産における価格にどのように影響するかをご覧ください。
冷間静水圧プレス(Cip)のプロセスとは何ですか?複雑な部品の均一な密度を実現する
冷間静水圧プレス(CIP)が、どのようにして均一な静水圧を利用して、複雑な形状に最適な、欠陥のない高密度な部品を粉末から作り出すかを学びましょう。
ホットプレスラミネートとは?熱と圧力によって作られる、耐久性のある非多孔質の表面
熱と圧力で層を融合させ、キャビネット、カウンタートップ、家具に理想的な、耐久性があり衛生的な表面を作り出すホットプレスラミネートの仕組みをご覧ください。
Nasiconにはなぜコールド等方圧プレス(Cip)が必要なのですか? 最高のグリーン密度とイオン伝導率を実現
NaSICONグリーンボディにとってコールド等方圧プレスが、密度勾配をなくし、均一な焼結性能を確保するために不可欠である理由を学びましょう。
試料はどのように試料ホルダーに取り付けるべきですか?機械的安定性と電気的完全性を確保する
信頼性の高いデータを得るために、機械的安定性を達成し、導電性を確保し、正確な活性領域を定義するための適切な試料取り付けの重要な手順を学びましょう。
粉末冶金におけるCipとは?複雑な部品の均一な密度を実現
冷間静水圧プレス(CIP)がどのようにして均一な静水圧を利用し、金属粉末を複雑な形状に高密度に圧縮するかを学びましょう。
Sem分析用のサンプルをどのように準備しますか?常に鮮明で正確なイメージングを実現する
チャージアップを防ぎ、高品質の結果を保証するために、サンプルのサイズ調整、マウンティング、導電性コーティングを含む、SEMサンプル調製の必須ステップを学びましょう。
銅複合粉末にコールド等方圧プレス(Cip)が使用されるのはなぜですか?焼結効率と密度の向上
コールド等方圧プレス(CIP)がいかにして銅粉末の高密度グリーン成形体を作成し、均一な構造と高速焼結を保証するかを学びましょう。
KbrはIr放射を吸収しますか?クリーンなスペクトルを得るための標準的なマトリックスである理由
KBrは中赤外域でIR透過性があるため、サンプルペレットに最適です。正確なFTIR分析のために、その吸湿性の性質をどのように扱うかを学びましょう。
アルジロダイト硫化物全固体電池において、コールド等方圧プレスが有利なのはなぜですか?最適な高密度化を実現
コールド等方圧プレスがアルジロダイト硫化物全固体電池の化学的完全性を維持し、エネルギー密度を向上させる方法をご覧ください。
セラミックスにおけるプレス成形法とは?高密度で高性能な部品を成形するためのガイド
粉末やインゴットから強靭で高密度な部品を成形するための、単軸プレス、熱間プレス、ロストワックス法などのセラミックプレス成形法について学びましょう。
Xrf用のプレス成形ペレットの調製方法:信頼性の高いサンプル分析のためのステップバイステップガイド
正確な結果を得るための粉砕、結合、圧縮技術を含む、XRF分析用プレス成形ペレットを調製するための4ステッププロセスを学びましょう。
コールドプレスオイルマシンはどのように機能しますか?機械的抽出により、栄養素と風味を維持
コールドプレスオイルマシンが、熱を加えることなく機械的圧力を使用して油を抽出し、優れた品質のために栄養素、風味、アロマを保持する方法を発見してください。
セラミックスのプレス加工とは?精密で高強度な製造のためのガイド
粉末の準備から焼結まで、セラミックスプレス加工の主要な工程と、欠陥のない高密度部品を実現するための変数制御方法を学びましょう。
検体封入に広く用いられている手法は何ですか?実績のある技術で完璧な組織スライドを実現しましょう
永続的なスライドのための樹脂系封入剤や、デリケートな染色に対応する水性封入剤など、組織検体にとって最も効果的な封入方法をご紹介します。
コールド等方圧プレス(Cip)を使用する利点は何ですか?セラミックペレットの高密度化を実現
高密度で欠陥のない複合セラミックペレットの製造において、コールド等方圧プレス(CIP)が単軸プレスよりも優れている理由を学びましょう。
ニッケルアルミナ複合材において、コールド等方圧プレス(Cip)にはどのような利点がありますか? 密度と強度を高める
コールド等方圧プレス(CIP)が、ニッケルアルミナ複合材の形成において、密度勾配をなくし、構造的完全性を向上させる方法を学びましょう。
固体光電気化学セルの組み立てにおける実験室用油圧ホットプレスの機能は何ですか?
実験室用油圧ホットプレスが、界面接着と光学特性の向上を通じて固体光電気化学セルを最適化する方法を学びましょう。
コールドアイソスタティックプレス(Cip)は、全固体電池にどのような利点をもたらしますか? 優れた密度と均一性
CIP(コールドアイソスタティックプレス)が、単軸プレスよりも全固体電池電解質に適している理由を発見してください。密度勾配を排除します。
ドライバッグプロセスとは?高速静水圧成形ガイド
ドライバッグ静水圧成形プロセスが、均一な粉末材料部品の高速、自動化、クリーンな生産をどのように可能にするかをご覧ください。
等方圧プレスはどのように機能しますか?複雑な部品に完全に均一な密度を実現
等方圧プレスがどのように均一な流体圧力を利用して粉末を圧縮し、優れた強度と一貫性を持つ高密度で複雑な形状の部品を製造するかを学びましょう。
等方圧造形の利点は何ですか?優れた材料の完全性と設計の自由度を実現
等方圧造形が、高性能材料に対してどのように均一な密度、複雑な形状、強化された機械的特性をもたらすかを発見してください。
金属イットリウムの酸化反応の研究において、真空ポンプと圧力制御システムはどのような役割を果たしますか?
真空・圧力システムが酸素分圧(5・10²~5・10³ Pa)を制御し、高性能ナノ材料を合成する方法を学びましょう。
高トン数単軸油圧プレスは、主にどのような目的で使用されますか?高エントロピー合金の固化を最適化する
高トン数油圧プレスが、AlFeTiCrZnCu合金粉末を2 GPaの冷間変形と機械的ロッキングにより「グリーンボディ」に固化させる方法を学びましょう。
Li7La3Zr2O12グリーン体の成形時に、一軸プレス後に冷間等方圧プレス(Cip)が必要なのはなぜですか?
LLZO固体電解質グリーンボディの密度勾配を解消し、品質を向上させるために、コールドアイソスタティックプレス(CIP)が不可欠である理由をご覧ください。
Tic10/Cu-Al2O3の二次処理にコールド等方圧プレスを使用する利点は何ですか?密度を向上させましょう!
コールド等方圧プレス(CIP)がTiC10/Cu-Al2O3複合材の密度勾配を解消し、残留気孔を閉じることで最高のパフォーマンスを実現する方法を学びましょう。
前へ
Page 1
次へ