あなたの研究室に高品質の機器と材料を提供する、信頼できる世界規模のサプライヤー!
について
ブログ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
製品
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
会社
私たちについて
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
サービスサポート
お問い合わせ
メニュー
メニューを閉じる
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
ブログ
について
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
よくある質問 -
電子ビーム蒸着コーティング用導電性窒化ホウ素るつぼ Bnるつぼ
異なる金属に同じるつぼを使用できますか?金属の純度と安全性のために専用のるつぼが不可欠な理由。
異なる金属に同じるつぼを使用すると、汚染、るつぼの損傷、安全上のリスクがどのように発生するかを学びます。信頼性の高い結果を得るためのベストプラクティスに従ってください。
高温真空蒸留に使用されるるつぼに必要な技術的特性は何ですか? | Kintek Solutions
Al-Mg真空蒸留におけるるつぼの必須特性(熱安定性、化学的不活性、真空完全性など)を学びましょう。
黒鉛るつぼはシーズニング(慣らし)が必要ですか?初回使用時の重要な安全ガイド
新しい黒鉛るつぼが、ひび割れを防ぎ、炉内での安全で効果的な動作を保証するために、一度限りの焼きなまし(シーズニング)プロセスを必要とする理由を学びましょう。
Li2.07Ni0.62N合成におけるアルミナるつぼの主な機能は何ですか?高純度と熱安定性を確保する
リチウムニッケル窒化物合成にアルミナルつぼが不可欠である理由、汚染を防ぎ化学量論的精度を確保する方法を学びましょう。
薄膜成膜における熱蒸着とは?Pvdコーティングの簡単なガイド
電子機器や光学用途向けの金属や酸化物の薄膜を成膜するために、熱蒸着が真空チャンバー内でどのように機能するかを学びましょう。
黒鉛るつぼで溶かせる金属は何ですか?安全で効率的な溶解のためのガイド
金、銀、アルミニウムなどの金属が黒鉛るつぼに理想的である理由と、鉄や鋼を避けるべき理由を発見してください。
銅を黒鉛るつぼで溶かすことはできますか?はい、実績のある方法をご紹介します
黒鉛るつぼが銅の溶解に理想的である理由、熱衝撃耐性や気孔率を防ぐ方法などの主な利点について学びましょう。
熱蒸着法とは?薄膜コーティング技術のガイド
熱蒸着がいかにしてエレクトロニクス、光学、パッケージング向けに超薄膜を生成するかを学びましょう。プロセス、用途、利点を理解します。
熱蒸着とは?シンプルで費用対効果の高い薄膜コーティングガイド
金やアルミニウムのような薄く均一な金属膜を堆積させるために、真空中で熱を使用するPVDコーティング技術である熱蒸着について学びましょう。
真空下での熱蒸着とは?高純度薄膜成膜ガイド
真空熱蒸着がエレクトロニクス、光学、研究用途向けに均一な薄膜をどのように作成するかを学びましょう。そのプロセスと利点を発見してください。
薄膜の熱蒸着法とは?高純度Pvdコーティングのガイド
主要なPVD法である熱蒸着が、高真空環境下でOLED、光学、エレクトロニクス用の高純度薄膜をどのように生成するかを学びましょう。
低温蒸着技術とは何ですか?熱に弱い材料へのコーティングガイド
低温蒸着が、熱損傷なしにプラスチックやポリマー上に薄膜を堆積させる方法を学びましょう。感熱性基板へのPVDに不可欠です。
溶解るつぼの意味とは?高温容器の必須ガイド
溶解るつぼの役割を発見してください。金属の溶解、純度の確保、極端な温度への耐性を持つ高性能容器です。
薄膜の熱蒸着とは?シンプルで費用対効果の高いコーティングガイド
熱蒸着がエレクトロニクス、光学、パッケージング用の薄膜をどのように作成するかを学びましょう。そのプロセス、利点、および制限を理解してください。
薄膜の蒸着技術とは?高純度コーティングのガイド
真空中で熱蒸着がどのように機能し、エレクトロニクス、光学、コーティング用の超薄型高純度膜を作成するかを学びましょう。
熱蒸着法の利点は何ですか?シンプル、高速、費用対効果の高い薄膜を実現
熱蒸着の主な利点を発見してください:金属および非金属薄膜のための操作の簡素さ、高い成膜速度、および低コスト。
熱蒸着の温度は何度ですか?それはあなたの材料と目標によって異なります
熱蒸着の温度は固定されていません。材料やプロセス目標によって異なります。蒸気圧と真空が、成膜に必要な適切な熱をどのように決定するかを学びましょう。
熱蒸着プロセスとは?シンプルで高純度な薄膜成膜のガイド
OLED、太陽電池、電子機器向けの超薄型金属膜を成膜するための、真空チャンバー内での熱蒸着の仕組みを学びましょう。その長所と短所を理解します。
物理気相成長法(Pvd)における蒸着法とは何ですか?薄膜コーティング技術のガイド
PVD蒸着の仕組みを学びましょう。真空中で固体材料を加熱して蒸気にし、様々な用途のために基板上に超薄く均一なコーティングを堆積させます。
グラファイトるつぼの利点は何ですか?優れた高温性能を実現
グラファイトるつぼの主な利点を発見してください:優れた熱安定性、高い機械的強度、そして純粋な溶融物に対する優れた耐薬品性。
実験室における蓋付きるつぼの機能は何ですか?高温反応をマスターする
蓋付きるつぼがどのようにして精密な高温加熱を可能にし、化学反応を制御し、実験分析における汚染を防ぐのかをご覧ください。
高温に耐え、金属やガラスに使用できるるつぼ容器はどれですか?プロセスのための適切な材料を見つける
高温用途向けに、黒鉛、アルミナ、ジルコニアのるつぼを比較します。温度、化学的不活性、コストに基づいて選択する方法を学びましょう。
るつぼを使用する際の注意点は何ですか?安全と正確さのための重要なステップ
熱衝撃やサンプル損失を防ぐための、るつぼの主要な安全対策(適切なPPE、予熱、制御された冷却、デシケーターの取り扱い)を学びましょう。
グラファイトるつぼは何に使用されますか?高温溶融と鋳造をマスターする
グラファイトるつぼが非鉄金属の溶融に優れた断熱性を提供し、効率を向上させ、エネルギーコストを最大75%削減する方法を学びましょう。
るつぼを割らずに加熱するにはどうすればよいですか?安全な加熱のための4段階プロトコルを習得しましょう
るつぼのひび割れを防ぐための4段階プロトコルを学びましょう。適切な予熱、段階的な昇温、均一な加熱技術で熱衝撃を避けましょう。
加熱中にるつぼがひび割れるのを防ぐにはどうすればよいですか?熱衝撃防止をマスターする
熱衝撃を避けることで、るつぼのひび割れを防ぐ方法を学びましょう。安全な実験作業のためには、予備乾燥、ゆっくりとした加熱、均一な冷却が重要なステップです。
同じるつぼを異なる金属に使用できますか?高価な汚染とるつぼの故障を避ける
異なる金属にるつぼを再利用することが、なぜ深刻な合金汚染とるつぼの故障を引き起こし、安全性と鋳造品質を危険にさらすのかを学びましょう。
高温に最適なるつぼは?成功のために材料と雰囲気を合わせましょう
高温に最適なるつぼの選び方を発見してください。温度、反応性、雰囲気に基づいて、タングステン、グラファイト、ジルコニア、アルミナを比較します。
ナノ材料合成における物理蒸着法とは何ですか?原子レベルの精度を達成する
熱蒸着やスパッタリングなどの物理蒸着(PVD)法を探求し、真空中で高純度のナノスケール薄膜を合成します。
るつぼはいつ交換すべきか?高額な故障を防ぐためのガイド
るつぼ交換の重要な兆候を学び、安全性と高額な炉の損傷を防ぎましょう。ひび割れ、浸食などを点検してください。
どのサイズのるつぼが必要ですか?安全で効率的な材料溶解のためのガイド
金属溶解用のるつぼのサイズを計算する方法を学びましょう。計算式、安全マージン、形状や材料適合性などの主要な要素が含まれています。
誘導炉におけるるつぼとは?金属を直接溶解するための受動的な容器
誘導炉のるつぼ(耐火物ライナー)が、従来のるつぼ炉とは異なり、どのようにして金属の直接内部加熱を可能にするかをご覧ください。
るつぼと磁器の違いは何ですか?機能と材料を解説
るつぼは高温容器であり、磁器はそれを作るために使用される一般的な材料です。適切な実験装置を選択するための重要な違いを学びましょう。
物理気相成長(Pvd)技術とは?スパッタリング、蒸着、その他に関するガイド
真空中で高性能薄膜を成膜するためのスパッタリングや熱蒸着などのPVD技術を探ります。違いと用途を学びましょう。
蒸着によって成膜される薄膜とは?高純度コーティングのガイド
熱蒸着が真空中でどのように超薄膜、高純度膜をマイクロエレクトロニクス、光学、パッケージング用途に生成するかを学びましょう。
炉用るつぼとは?高温溶解容器ガイド
炉用るつぼとは何か、金属溶解におけるその役割、そして用途に応じた適切な材料(グラファイト、セラミック、炭化ケイ素)の選び方について学びましょう。
金属溶解に最適なるつぼは?金属と炉の種類に合った材料を選ぶ
金属溶解に適したるつぼの選び方をご紹介します。粘土黒鉛、炭化ケイ素、黒鉛、セラミックを特定の用途に合わせて比較します。
炉内で腐食性蒸気に鉄サンプルをさらす際に、管状るつぼを使用する利点は何ですか?
管状るつぼが停滞領域をなくし、360度のガス接触を確保して、腐食層と質量の変化の正確なデータを取得する方法を学びましょう。
なぜ金属を溶かするつぼに黒鉛(グラファイト)が使われるのか?優れた高温性能を引き出す
黒鉛るつぼが、比類のない耐熱性、耐熱衝撃性、化学的不活性性により、純粋な結果を得るために金属溶解で優れている理由をご覧ください。
ニッケルるつぼを使用する利点は何ですか?リチウム製錬における安全性と純度を確保する
リチウムとの三酸化ホウ素の製錬にニッケルるつぼが理想的な選択肢である理由、比類のないアルカリ耐性と安定性について学びましょう。
Fe-13Cr合金に高純度コランダムるつぼが選ばれる理由とは?溶融金属の純度と安定性を確保する
99%アルミナコランダムるつぼがFe-13Cr合金の溶解に不可欠である理由、汚染を防ぎ化学的精度を確保する方法を学びましょう。
アルミニウムるつぼの温度範囲はどれくらいですか?実験室での正確な熱分析を保証しましょう
アルミニウムるつぼの信頼できる上限温度である600℃と、300℃から変形が始まり、DSC測定の精度に影響を与える理由を学びましょう。
ラボ用エバポレーターとは?研究室に最適なシステムの選び方
ラボ用エバポレーターについて学びましょう。その仕組み、主な種類(ロータリー、遠心、窒素)、そして用途に合った適切なエバポレーターの選び方。
溶解に最適なるつぼとは?あなたの材料とプロセスに合ったるつぼの選び方
温度、材料適合性、加熱方法に基づいて、金属やガラスの溶解に理想的なるつぼを選択する方法を発見してください。汚染や故障を避けましょう。
熱蒸着の温度はどのくらいですか?それは材料に依存し、固定された数値ではありません
熱蒸着の温度が材料によって異なる理由を学びましょう。固定された温度ではなく、蒸気圧がどのようにして高品質な薄膜の成膜プロセスを制御するのかを発見してください。
熱蒸着装置の真空度はどの程度ですか?高真空(10⁻⁵~10⁻⁷ Torr)で高純度を実現
純粋で均一な薄膜を得るために、熱蒸着装置で高真空(10⁻⁵~10⁻⁷ Torr)が必要な理由を学びましょう。平均自由行程と汚染制御について理解します。
真空熱蒸着法とは?薄膜コーティングの簡単なガイド
高真空環境下での薄膜堆積における、真空熱蒸着の仕組み、主要なステップ、利点、および制限について学びましょう。
物理蒸着(Pvd)の蒸着法とは?高純度薄膜コーティングガイド
PVD蒸着が真空中で熱エネルギーを利用して、様々な産業および研究用途向けの高純度薄膜をどのように作成するかを学びましょう。
熱蒸着法とは?薄膜コーティングの簡単なガイド
薄膜堆積における熱蒸着の仕組みを学びましょう。そのプロセス、利点、限界、および材料科学における主要な応用を発見してください。
ステンレス鋼はるつぼとして機能しますか?間違った材料を使用することの驚くべき危険性
なぜステンレス鋼が危険な選択肢であるかを発見し、失敗や汚染のリスクを冒します。重要な違いと安全な代替品を学びましょう。
黒鉛はるつぼとして使用できますか?高温溶解を成功させる秘訣
黒鉛が極度の耐熱性、化学的不活性、耐久性を提供し、金属溶解や実験作業においてるつぼの最高の選択肢である理由をご覧ください。
るつぼのサイズにはどのような種類がありますか?宝飾品から産業規模までのガイド
宝飾品、鋳造所、産業用途に適した容量の選び方とともに、ミリリットルからトンまでのるつぼのサイズについて学びましょう。
熱水液化生成物の回収におけるPor4グレードろ過るつぼの機能は何ですか?
熱水液化におけるpor4グレードろ過るつぼが、バイオオイルを固体残渣から分離し、純度とプロセス効率を確保する方法を学びましょう。
高純度ニッケルるつぼが溶融塩金属安定性試験に選ばれる理由とは?純粋で信頼性の高いデータを保証
高純度ニッケルるつぼが、その化学的不活性とデュアル電極機能により、溶融塩安定性試験に不可欠である理由をご覧ください。
マグネシウム真空昇華における耐熱るつぼの具体的な役割とは? 高純度化の鍵
耐熱るつぼが真空昇華中に不純物を選択的に分離し、高純度マグネシウムの製造を可能にする仕組みを学びましょう。
Ct法で使用される反応るつぼの要件は何ですか?コーティングの純度と安定性を確保する
1173 Kでの耐熱性や腐食性のフッ化物溶融塩への耐性など、CT法用るつぼに不可欠な要件について学びましょう。
黒鉛は耐火るつぼの製造にどのように使用されますか?優れた高温溶解性能のため
黒鉛の極端な耐熱性、熱伝導性、化学的不活性といった独自の特性が、なぜ耐火るつぼに理想的であるのかを発見してください。
同じるつぼで異なる金属を溶かすことはできますか?高価な汚染と鋳造の失敗を避ける
1つのるつぼで異なる金属を溶かすことが、なぜ汚染、劣悪な合金、鋳造欠陥を引き起こすのかを学びましょう。金属の純度とプロジェクトの成功を確実にします。
グラファイトるつぼはどれくらいの高温に耐えられますか?炉での真の可能性を引き出す。
不活性ガス中での5000°Fから開放空気中での酸化リスクまで、グラファイトるつぼの実際の温度限界について学びましょう。用途に合ったるつぼを選びましょう。
使用後のるつぼをどのように洗浄しますか?実験室用るつぼの段階的な手順ガイド
実験室での作業における汚染を防ぎ、正確な結果を保証するために、磁器、白金、グラファイトるつぼを洗浄するための適切な方法を学びましょう。
ステンレス鋼をるつぼとして使用できますか?安全で効果的な材料選択のためのガイド
ステンレス鋼がるつぼとして適切である場合と、高温用途における重要な制限について学びます。汚染と破損を回避しましょう。
金の熱蒸着とは?金薄膜成膜の簡単なガイド
真空中で金薄膜を熱蒸着する方法を学びましょう。電子機器や研究におけるそのプロセス、利点、限界を探ります。
異なる金属には異なるるつぼが必要ですか?金属溶解における安全性と純度を確保する
金属溶解において適切なるつぼを選ぶことがなぜ重要なのかを学びましょう。当社の専門ガイドで、汚染、るつぼの破損、危険な反応を回避してください。
るつぼは非常に高い温度に耐えられますか?はい、用途に合った適切な材料を選べば可能です。
グラファイト、セラミック、金属合金のるつぼが、金属溶解用の3000°Cから特殊な実験室での融解まで、どのように極度の熱に耐えるかをご覧ください。
るつぼの種類にはどのようなものがありますか?溶解用途に最適なものを見つけましょう
粘土黒鉛、炭化ケイ素、セラミックス、金属など、材料別のるつぼの種類を探ります。温度と化学的適合性に応じた適切なるつぼの選び方を学びましょう。
現代のるつぼは何でできているのか?高温用途向け材料ガイド
黒鉛やセラミックスから白金まで、現代のるつぼに使用される材料と、用途に最適なものを選択する方法を発見してください。
異なる金属には異なるるつぼが必要ですか?実験室の純度と安全性を確保しましょう
汚染を防ぎ安全を確保するために、なぜ異なる金属には専用のるつぼが不可欠なのかを学びましょう。実験室専門家のためのガイドです。
スパッタリングとEビーム蒸着の違いは何ですか?薄膜堆積に最適なPvd法を選択する
スパッタリングとEビーム蒸着を比較し、お使いの研究室の薄膜堆積ニーズに合わせて、メカニズム、膜質、および用途への適合性を理解しましょう。
薄い金属膜の成膜に熱蒸着は使われますか?この基礎的なPvd技術のガイド
熱蒸着が太陽電池、OLED、半導体向けに純粋な金属膜を成膜する方法を学びましょう。スパッタリングやALDと比較します。
るつぼにはどのような種類があり、それぞれどのように使われますか?用途に合ったるつぼの選び方
工業用るつぼと実験用るつぼの違いを学びましょう。金属の溶解や高純度化学分析に適したるつぼを選びましょう。
るつぼ材料の融点は?プロセスに合ったるつぼを選びましょう
るつぼの融点は材料によって異なり、プラチナの1770°Cからグラファイトの3650°C以上まで様々です。用途に合ったるつぼの選び方を学びましょう。
熱蒸着システムとは?シンプルで効果的な薄膜形成のためのガイド
熱蒸着システムが、エレクトロニクス、光学、コーティングのために薄い金属膜を形成するためにどのように機能するかを学びましょう。プロセス、用途、および制限を理解します。
熱蒸着は何を成膜するために使用されますか?金属、化合物、および主要な用途に関するガイド
熱蒸着は、アルミニウム、金、銀などの金属や一部の化合物を成膜します。どの材料が理想的か、そしていつ代替方法を選択すべきかをご覧ください。
熱蒸着の例とは?反射型ヘッドライトコーティングなどの作成
ヘッドライトミラーコーティングなどの熱蒸着の例と、薄膜堆積のための電子機器、光学、装飾仕上げでのその使用法を発見してください。
るつぼの温度は何度ですか?熱のニーズに合った適切な材料の選び方
るつぼには単一の温度というものはありません。グラファイト、SiC、アルミナ、モリブデンなど、特定の高温用途に最適なるつぼ材料の選び方を学びましょう。
高温るつぼは何でできていますか?研究室に最適な材料を選びましょう
プラチナ、グラファイト、セラミックスなどの高温るつぼ材料について学びましょう。純度、導電性、または熱安定性に合わせて適切なものを選択してください。
工業用るつぼとは?高温溶解容器のガイド
工業用るつぼについて学びましょう:金属溶解用の高性能容器。粘土-黒鉛、炭化ケイ素、セラミックスなどの材料を探求します。
薄膜の蒸着理論とは何ですか?高純度薄膜成膜のためのガイド
真空中で熱蒸着がいかにして純粋な薄膜を成膜するかを学びましょう。蒸発から凝縮までのプロセス、およびその応用を理解します。
薄膜堆積における熱蒸着技術とは?シンプルで高純度なコーティングのガイド
熱蒸着がどのように真空中で超薄膜を堆積させるかを学びましょう。OLED、太陽電池におけるその応用と、高純度層のための利点を発見してください。
熱蒸着はどのように機能するのか?ラボのための薄膜成膜ガイド
真空中で熱蒸着がどのように超薄膜を生成するかを学びましょう。エレクトロニクス、光学、材料科学分野のラボにとって不可欠な技術です。
フラッシュ蒸着法とは何ですか?薄膜作製における正確な化学量論の実現
フラッシュ蒸着法が薄膜作製中に材料組成を維持する方法を学びましょう。合金や化合物に最適です。標準的な蒸着法の限界を克服します。
熱蒸着法の原理とは?薄膜堆積の簡単なガイド
熱蒸着の仕組みを学びましょう:真空中で材料を加熱し、薄膜コーティングを生成します。金やアルミニウムなどの金属に最適です。
熱蒸着法とは?シンプルでコスト効率の高い薄膜成膜へのガイド
高真空環境下で、熱蒸着法が金やアルミニウムなどの金属の薄膜を堆積させる仕組みを学びましょう。その利点と限界を理解します。
るつぼにはいくつの種類がありますか?高温作業に適した素材を選びましょう
白金、ジルコニウム、炭化ケイ素、合金など、素材別のるつぼの種類について学びましょう。ラボの温度と耐薬品性に基づいて選択してください。
黒鉛るつぼで鋼を溶かすことはできますか?炭素汚染の重大なリスクを理解しましょう。
黒鉛るつぼで鋼を溶かすと炭素が吸収され、硬度と脆性が変化する理由、そしてセラミックの代替品を使用すべき時について学びましょう。
熱蒸着はどのようにして薄い金属膜を堆積させるために使用されますか?高純度コーティングのための簡単なガイド
真空中で熱蒸着がどのようにして薄い金属膜を堆積させるかを学びましょう。電子機器製造におけるプロセス手順、主要コンポーネント、および理想的な用途を発見してください。
薄膜にはどのような材料が使われていますか?用途に合った適切な材料を見つけましょう
シリコンやポリマーから金属やセラミックスまで、薄膜材料の範囲と、エレクトロニクス、光学、またはコーティングに適切な材料を選択する方法を探ります。
ダイヤモンド粒子の溶融塩クロムめっきにおける高温るつぼの機能は何ですか?Cr-Cめっきの成功を保証する
900°Cでのダイヤモンドの溶融塩クロムめっきに必要な熱安定性と化学的不活性を高温るつぼがどのように提供するかを学びましょう。
ニッケルるつぼがLi2Ohbrの調製に適しているのはなぜですか?溶融電解質の高純度を保証する
化学的安定性と耐食性に優れたニッケルるつぼが、Li2OHBr保護層の調製に不可欠である理由をご覧ください。
密閉るつぼを使用することの重要性とは?珪灰石/コールマナイト粉末のための必須焼結のヒント
1000℃での焼結において、揮発性物質の損失を防ぎ、珪灰石/コールマナイトの化学的安定性を確保するために、密閉るつぼが不可欠である理由を学びましょう。
Aln結晶成長におけるRbsnるつぼの役割とは?高温窒化効率を高める
RBSNるつぼが、最高1700℃のAlN結晶成長において、熱安定性と表面核生成サイトをどのように提供するかを学びましょう。
るつぼの代替品は何ですか?高温容器の代替品ガイド
最適なるつぼの代替品(グラファイト、セラミック、金属容器)を見つけましょう。温度、化学的適合性、熱衝撃耐性に基づいて選択してください。
セラミックるつぼが耐えられる熱量はどれくらいですか?材料別の耐熱温度ガイド
アルミナ、ジルコニア、ムライトなどのるつぼ材料の最高使用温度限界を学びましょう。熱的および化学的ニーズに応じて、用途に最適なセラミックを選択してください。
るつぼで何ができますか?金属、ガラスなどの高温溶解を可能にする
精密な温度制御で金属、ガラス、セラミックを溶解するためのるつぼの用途を発見してください。研究室、鋳造所、作業場に不可欠です。
粘土るつぼの最高温度は何度ですか?あなたの溶解ニーズに合ったるつぼを見つけましょう
粘土るつぼの最高温度は約1600°Cです。材料の組成(グラファイト、SiC)がどのように温度限界と化学的適合性を決定し、安全な溶解を可能にするか学びましょう。
熱蒸着の用途とは?エレクトロニクスおよびコーティングのための薄膜形成ガイド
OLEDディスプレイ、太陽電池、MEMS、光学コーティングにおける熱蒸着の用途を探ります。お客様のプロジェクトにとっての利点と限界を理解しましょう。
るつぼに最適な素材は何ですか?金属とプロセスに合わせて素材をマッチング
温度、化学的適合性、および特定の用途に基づいて、グラファイトからジルコニアまで、最適なるつぼ材料を選択する方法を学びましょう。
なぜるつぼには磁器が使われるのか?耐熱性と手頃な価格の理想的なバランスを発見する
一般的な手順において、磁器るつぼが耐熱性、化学的不活性、費用対効果の点で実験室の標準となっている理由を学びましょう。
るつぼと蓋の5つの用途とは?高温材料処理ガイド
金属の溶解、化学分析、灰化、焼成、焼結というるつぼの5つの主要な用途を発見してください。研究室に最適なるつぼの選び方を学びましょう。
高周波誘導溶解炉のるつぼには何が使用されていますか?最適な溶解のために、金属と周波数を一致させましょう
金属の種類、炉の周波数、純度の要件に基づいて、適切な誘導溶解炉のるつぼ材料(黒鉛、セラミック、または銅)を選択する方法を学びましょう。
前へ
Page 3
次へ