製品 ラボ用消耗品と材料 薄膜蒸着部品 電子ビーム蒸着コーティング導電性窒化ホウ素るつぼ(BNるつぼ)
電子ビーム蒸着コーティング導電性窒化ホウ素るつぼ(BNるつぼ)

薄膜蒸着部品

電子ビーム蒸着コーティング導電性窒化ホウ素るつぼ(BNるつぼ)

商品番号 : KES03

価格は以下に基づいて変動します 仕様とカスタマイズ


材料
窒化ホウ素
仕様
35-64.5mm*17-35mm
ISO & CE icon

配送:

お問い合わせ 配送詳細を確認してください オンタイムディスパッチ保証.

応用

導電性窒化ホウ素るつぼは、電子ビーム蒸着コーティング用に設計された高純度で滑らかなるつぼです。耐高温性、サーマルサイクル性能に優れ、各種金属やセラミックレアアースと反応しません。るつぼは、急速な加熱および冷却条件下でも無傷のままです。合金の溶解、希土類およびセラミックの焼結、電子ビーム蒸着コーティングなどに応用されています。高周波誘導加熱、コーティング、電子ビーム蒸着、アルミめっき、シリコンめっきなどの熱蒸着プロセスでよく使用されます。

導電性窒化ホウ素るつぼは、高純度、高仕上げ、優れた電子ビーム蒸着コーティング性能を備えています。蒸発速度を高め、材料の切り替えを加速し、熱安定性を向上させ、電力要件を削減し、最終的には生産性とコスト効率を向上させることができます。

ディテール&パーツ

電子ビーム蒸着コーティング導電性窒化ホウ素るつぼの詳細

電子ビーム蒸着コーティング導電性窒化ホウ素るつぼの詳細 2

電子ビーム蒸着コーティングの導電性窒化ホウ素るつぼの詳細3

技術仕様

外径35mm 40mm 45mm 50mm 64.5mm
高い17mm 20mm 22.5mm 25mm 35mm

ご紹介するるつぼはさまざまなサイズでご利用いただけます。ご要望に応じてカスタム サイズもご利用いただけます。

アドバンテージ

  • フィルムは仕上がりが良く、純度が高く、汚染が少なく、耐用年数が長いです。
  • 耐高温性、耐ヒートサイクル性に優れています。
  • 熱膨張が低く、ほとんどの溶融金属による濡れに耐えます。
  • 耐熱性は2000℃まであり、窒化ホウ素はアルミニウムと反応せず、揮発しにくい。
  • 蒸発速度の増加。蒸発速度が向上するとサイクル時間が短縮され、全体の収率が向上します。
  • 素早い材料切り替え。導電性窒化ホウ素るつぼにより、材料の素早い切り替えが容易になり、チャンバーのダウンタイムが最小限に抑えられ、プロセス効率が向上します。
  • 強化された熱安定性。これらのるつぼは熱安定性が向上し、るつぼ自体からの熱伝達を低減し、一貫した制御された蒸発を保証します。

FAQ

物理蒸着 (PVD) とは何ですか?

物理蒸着 (PVD) は、固体材料を真空中で蒸発させ、それを基板上に蒸着することによって薄膜を蒸着する技術です。 PVD コーティングは耐久性、耐傷性、耐食性に優れているため、太陽電池から半導体に至るまで、さまざまな用途に最適です。 PVD は、高温に耐えられる薄膜も作成します。ただし、PVD はコストが高くなる可能性があり、コストは使用する方法によって異なります。たとえば、蒸着は低コストの PVD 法ですが、イオン ビーム スパッタリングはかなり高価です。一方、マグネトロン スパッタリングは高価ですが、より拡張性があります。

高純度黒鉛るつぼはどのように作られるのでしょうか?

高純度グラファイトるつぼは通常、静水圧プレスと呼ばれるプロセスを通じて製造されます。黒鉛粉末をゴム型に入れ、全方向から高圧を加える方法です。この圧力により、黒鉛粒子が緻密で均一なるつぼ形状に圧縮されます。次に、るつぼを高温に加熱して不純物を除去し、純度を高めます。

マグネトロンスパッタリングとは何ですか?

マグネトロン スパッタリングは、密着性に優れた非常に緻密な膜を生成するために使用されるプラズマ ベースのコーティング技術であり、融点が高く蒸発できない材料にコーティングを作成するための多用途の方法です。この方法では、ターゲットの表面近くに磁気的に閉じ込められたプラズマが生成され、そこで正に帯電した高エネルギーイオンが負に帯電したターゲット材料と衝突し、原子が放出または「スパッタリング」されます。これらの放出された原子は、基板またはウェーハ上に堆積され、目的のコーティングが作成されます。

スパッタリングターゲットとは何ですか?

スパッタリング ターゲットは、スパッタ堆積プロセスで使用される材料です。このプロセスでは、ターゲット材料を小さな粒子に分割し、スプレーを形成してシリコン ウェーハなどの基板をコーティングします。スパッタリング ターゲットは通常、金属元素または合金ですが、一部のセラミック ターゲットも利用できます。さまざまなサイズや形状があり、一部のメーカーでは大型のスパッタリング装置用にセグメント化されたターゲットを作成しています。スパッタリングターゲットは、高精度かつ均一に薄膜を堆積できるため、マイクロエレクトロニクス、薄膜太陽電池、オプトエレクトロニクス、装飾コーティングなどの分野で幅広い用途があります。

薄膜を堆積するにはどのような方法が使用されますか?

薄膜の堆積に使用される主な方法は、化学蒸着 (CVD) と物理蒸着 (PVD) の 2 つです。 CVD では、反応ガスをチャンバーに導入し、そこでウェーハ表面で反応して固体膜を形成します。 PVD には化学反応は含まれません。代わりに、構成材料の蒸気がチャンバー内で生成され、ウェーハ表面で凝縮して固体膜を形成します。一般的な PVD の種類には、蒸着堆積とスパッタリング堆積が含まれます。蒸着技術には、熱蒸着、電子ビーム蒸着、誘導加熱の 3 種類があります。

高純度黒鉛るつぼの一般的な用途は何ですか?

高純度黒鉛るつぼは、冶金、鋳造所、研究所などの業界で幅広い用途に使用されます。これらは、アルミニウム、銅、貴金属などの非鉄金属の溶解および鋳造に一般的に使用されます。高純度黒鉛るつぼは、合金や高温セラミックスの製造にも使用されます。これらは、研究室での化学分析、分光法、サンプル調製などのプロセスに不可欠です。さらに、これらのるつぼは、半導体産業においてシリコンや他の半導体材料の溶融および成長に応用されています。

なぜマグネトロンスパッタリングなのか?

マグネトロンスパッタリングは、蒸着法を超えて膜厚や膜密度の精度が高いため、好まれています。この技術は、特定の光学的または電気的特性を持つ金属または絶縁コーティングを作成するのに特に適しています。さらに、マグネトロン スパッタリング システムは複数のマグネトロン ソースを使用して構成できます。

スパッタリングターゲットはどのように作られるのでしょうか?

スパッタリングターゲットは、ターゲット材料の特性や用途に応じてさまざまな製造プロセスを使用して製造されます。真空溶解圧延法、ホットプレス法、特殊プレス焼結法、真空ホットプレス法、鍛造法などがあります。ほとんどのスパッタリング ターゲット材料は幅広い形状やサイズに加工できますが、円形または長方形の形状が最も一般的です。ターゲットは通常、金属元素または合金で作られていますが、セラミックターゲットも使用できます。酸化物、窒化物、ホウ化物、硫化物、セレン化物、テルル化物、炭化物、結晶、複合混合物などのさまざまな化合物から作られた複合スパッタリングターゲットも入手可能です。

薄膜形成装置とは何ですか?

薄膜堆積装置とは、基板材料上に薄膜コーティングを作成および堆積するために使用されるツールおよび方法を指します。これらのコーティングはさまざまな材料で作ることができ、基材の性能を向上または変更できるさまざまな特性を備えています。物理蒸着 (PVD) は、固体材料を真空中で蒸発させ、それを基板上に蒸着する一般的な技術です。他の方法としては、蒸着やスパッタリングなどがあります。薄膜蒸着装置は、光電子デバイス、医療用インプラント、精密光学機器などの製造に使用されます。

蒸発るつぼに使用される一般的な材料は何ですか?

蒸発るつぼは通常、タングステン、タンタル、モリブデン、グラファイト、セラミック化合物などの材料で作られています。これらの材料は融点が高く、熱伝導率が良いため、蒸着時に必要な高温条件に適しています。るつぼの材料の選択は、蒸発材料、必要な膜特性、プロセスパラメータなどの要因によって異なります。

高純度黒鉛るつぼを選択する際に考慮すべき要素は何ですか?

高純度黒鉛るつぼを選択するときは、いくつかの要素を考慮する必要があります。まず、るつぼのサイズと容量は、意図した用途と、溶解または処理される材料の量に適合している必要があります。るつぼの熱伝導率、耐熱衝撃性、化学的適合性を評価して、特定のプロセス要件を確実に満たす必要があります。汚染を最小限に抑え、優れた性能を確保するには、高純度レベルの高品質グラファイト材料で作られたるつぼを選択することが重要です。取り扱いを容易にするハンドルや注ぎ口の有無など、るつぼの設計と構造も考慮する必要があります。さらに、特定の用途に最適な高純度黒鉛るつぼを確実に選択するには、メーカーまたはその分野の専門家に相談することをお勧めします。

薄膜形成に使用される材料は何ですか?

薄膜堆積では、一般的に金属、酸化物、化合物を材料として利用しますが、それぞれに独自の長所と短所があります。金属は耐久性と堆積の容易さの点で好まれますが、比較的高価です。酸化物は耐久性が高く、高温に耐え、低温でも堆積させることができますが、脆くて加工が難しい場合があります。化合物は強度と耐久性を備え、低温で堆積でき、特定の特性を示すように調整できます。

薄膜コーティングの材料の選択は、用途の要件によって異なります。金属は熱と電気の伝導に理想的ですが、酸化物は保護を提供するのに効果的です。化合物は特定のニーズに合わせて調整できます。最終的に、特定のプロジェクトに最適な素材は、アプリケーションの特定のニーズによって異なります。

スパッタリングターゲットは何に使用されますか?

スパッタリング ターゲットは、イオンをターゲットに衝突させて基板上に材料の薄膜を堆積するスパッタリングと呼ばれるプロセスで使用されます。これらのターゲットは、マイクロエレクトロニクス、薄膜太陽電池、オプトエレクトロニクス、装飾コーティングなど、さまざまな分野で幅広い用途があります。さまざまな基板上に材料の薄膜を高精度かつ均一に蒸着できるため、精密製品を製造するための理想的なツールとなります。スパッタリング ターゲットにはさまざまな形状やサイズがあり、アプリケーションの特定の要件を満たすように特殊化することができます。

薄膜形成技術とは何ですか?

薄膜堆積技術は、厚さが数ナノメートルから 100 マイクロメートルの範囲の非常に薄い材料膜を基板表面または以前に堆積したコーティング上に塗布するプロセスです。この技術は、半導体、光学デバイス、ソーラーパネル、CD、ディスクドライブなどの最新のエレクトロニクスの製造に使用されています。薄膜堆積の 2 つの大きなカテゴリは、化学変化によって化学的に堆積されたコーティングが生成される化学堆積と、材料がソースから放出され、機械的、電気機械的、または熱力学的プロセスを使用して基板上に堆積される物理蒸着です。

蒸発るつぼを使用する利点は何ですか?

蒸発るつぼには、薄膜堆積プロセスにおいていくつかの利点があります。材料の蒸発のための制御された環境を提供し、膜の厚さと均一性を正確に制御できます。るつぼは高温に耐え、効率的な熱伝達を実現し、安定した蒸発速度を保証します。さまざまな蒸着システムや基板構成に対応できるよう、さまざまなサイズや形状が用意されています。蒸発るつぼを使用すると、金属、半導体、セラミックなどの幅広い材料を蒸着することもできます。簡単にロードおよびアンロードできるため、素早い材料変更やプロセス調整が容易になります。全体として、蒸発るつぼは薄膜堆積技術に不可欠なツールであり、多用途性、信頼性、再現性を提供します。

最適な薄膜成膜を実現するにはどのような方法がありますか?

望ましい特性を備えた薄膜を実現するには、高品質のスパッタリングターゲットと蒸着材料が不可欠です。これらの材料の品質は、純度、粒子サイズ、表面状態などのさまざまな要因によって影響されます。

不純物は得られる薄膜に欠陥を引き起こす可能性があるため、スパッタリングターゲットまたは蒸着材料の純度は重要な役割を果たします。粒子サイズも薄膜の品質に影響を与え、粒子が大きくなると膜の特性が低下します。さらに、表面が粗いとフィルムに欠陥が生じる可能性があるため、表面状態も非常に重要です。

最高品質のスパッタリングターゲットと蒸着材料を得るには、高純度、小さな粒径、滑らかな表面を備えた材料を選択することが重要です。

薄膜蒸着の用途

酸化亜鉛系薄膜

ZnO 薄膜は、熱、光学、磁気、電気などのさまざまな産業で応用されていますが、主な用途はコーティングと半導体デバイスです。

薄膜抵抗器

薄膜抵抗器は現代のテクノロジーにとって極めて重要であり、ラジオ受信機、回路基板、コンピューター、高周波デバイス、モニター、ワイヤレス ルーター、Bluetooth モジュール、および携帯電話受信機で使用されています。

磁性薄膜

磁性薄膜は、エレクトロニクス、データストレージ、無線周波数識別、マイクロ波装置、ディスプレイ、回路基板、オプトエレクトロニクスの主要コンポーネントとして使用されています。

光学薄膜

光学コーティングとオプトエレクトロニクスは、光学薄膜の標準的な用途です。分子線エピタキシーでは、光電子薄膜デバイス (半導体) を製造できます。この場合、エピタキシャル膜は一度に 1 原子ずつ基板上に堆積されます。

高分子薄膜

ポリマー薄膜は、メモリチップ、太陽電池、電子デバイスに使用されます。化学蒸着技術 (CVD) により、適合性やコーティングの厚さを含むポリマー フィルム コーティングを正確に制御できます。

薄膜電池

薄膜電池は埋め込み型医療機器などの電子機器に電力を供給しており、リチウムイオン電池は薄膜の使用により大幅に進歩しました。

薄膜コーティング

薄膜コーティングは、さまざまな産業や技術分野におけるターゲット材料の化学的および機械的特性を強化します。一般的な例としては、反射防止コーティング、紫外線防止または赤外線防止コーティング、傷防止コーティング、レンズの偏光などが挙げられます。

薄膜太陽電池

薄膜太陽電池は太陽エネルギー産業にとって不可欠であり、比較的安価でクリーンな電力の生産を可能にします。太陽光発電システムと熱エネルギーは、適用可能な 2 つの主要な技術です。

エレクトロニクス用のスパッタリングターゲットとは何ですか?

エレクトロニクス用のスパッタリング ターゲットは、アルミニウム、銅、チタンなどの材料の薄いディスクまたはシートであり、シリコン ウェーハ上に薄膜を堆積して、トランジスタ、ダイオード、集積回路などの電子デバイスを作成するために使用されます。これらのターゲットは、スパッタリングと呼ばれるプロセスで使用されます。このプロセスでは、ターゲットにイオンを衝突させることで、ターゲット材料の原子が表面から物理的に放出され、基板上に堆積されます。エレクトロニクス用のスパッタリング ターゲットは、マイクロエレクトロニクスの製造に不可欠であり、通常、高品質のデバイスを確保するために高い精度と均一性が必要です。

蒸発るつぼはどのように取り扱い、メンテナンスすればよいですか?

蒸発るつぼは、寿命と性能を確保するために、慎重に取り扱い、維持する必要があります。るつぼは毎回使用する前に徹底的に洗浄して、以前の堆積からの残留物質を除去する必要があります。るつぼの表面を損傷する可能性のある研磨材の使用は避けてください。ロードおよびアンロードの際は、汚染を防ぐために、清潔な手袋または専用のツールを使用してるつぼを扱ってください。使用しないときは、腐食や劣化を避けるために、るつぼを乾燥した清潔な環境に保管してください。るつぼに亀裂、欠陥、摩耗の兆候がないか定期的に検査することは、蒸着プロセス中の予期せぬ故障を防ぐために重要です。るつぼの寿命を延ばすために、アニーリングや表面処理などの特定のメンテナンス手順については、メーカーの推奨事項に従ってください。

薄膜の堆積に影響を与える要因とパラメータ

堆積速度:

フィルムの製造速度(通常は厚さを時間で割った値で測定されます)は、用途に適した技術を選択するために重要です。薄膜には中程度の堆積速度で十分ですが、厚い膜には速い堆積速度が必要です。速度と正確な膜厚制御のバランスをとることが重要です。

均一:

基板全体にわたるフィルムの一貫性は均一性として知られており、通常はフィルムの厚さを指しますが、屈折率などの他の特性にも関係する場合があります。均一性の過小または過大な仕様を避けるために、アプリケーションをよく理解することが重要です。

充填能力:

充填能力またはステップカバレージは、堆積プロセスが基板のトポグラフィーをどの程度うまくカバーするかを指します。使用される堆積方法 (CVD、PVD、IBD、または ALD など) は、ステップ カバレッジと充填に大きな影響を与えます。

フィルムの特徴:

フィルムの特性は、フォトニック、光学、電子、機械、または化学に分類できるアプリケーションの要件によって異なります。ほとんどの映画は、複数のカテゴリの要件を満たす必要があります。

プロセス温度:

フィルムの特性はプロセス温度に大きく影響され、アプリケーションによって制限される場合があります。

ダメージ:

各堆積技術には、堆積される材料に損傷を与える可能性があり、フィーチャが小さいほどプロセス損傷を受けやすくなります。潜在的な損傷源には、汚染、紫外線、イオン衝撃などがあります。材料とツールの限界を理解することが重要です。

スパッタリングターゲットの寿命はどのくらいですか?

スパッタリングターゲットの寿命は、材料の組成、純度、使用される特定の用途などの要因によって異なります。一般に、ターゲットは数百時間から数千時間のスパッタリングに耐えることができますが、これは各実行の特定の条件によって大きく異なります。適切な取り扱いとメンテナンスにより、ターゲットの寿命を延ばすこともできます。さらに、回転スパッタリング ターゲットを使用すると、実行時間が長くなり、欠陥の発生が減少するため、大量プロセスにとってよりコスト効率の高いオプションとなります。
この製品に関するよくある質問をもっと見る

4.9

out of

5

The boron nitride crucible delivered in 3 days, which is really fast! The quality is excellent and it fits perfectly in my electron beam evaporator.

Yuxin Cheng

4.7

out of

5

I'm very impressed with the performance of this crucible. It has increased the evaporation rate and reduced the power requirements in my electron beam evaporator.

Hannes Marquardt

4.8

out of

5

The conductive boron nitride crucible is a great choice for electron beam evaporation coating. It has a long service life and produces high-quality films.

Alexei Orlov

4.6

out of

5

I've been using this crucible for several months now and I'm very happy with it. It's very durable and has helped me to improve the quality of my coatings.

Juanita Garcia

4.9

out of

5

This crucible is a game-changer! It has significantly improved the efficiency of my electron beam evaporator and reduced my production costs.

Omar Sy

4.7

out of

5

I highly recommend this crucible to anyone who is looking for a high-quality and durable option for electron beam evaporation coating.

Adeline Dubois

4.8

out of

5

The conductive boron nitride crucible is an excellent choice for high-temperature applications. It has excellent thermal stability and resists wetting by most molten metals.

Mohammad Reza

4.6

out of

5

I'm very satisfied with this crucible. It has helped me to improve the quality of my coatings and reduce my production costs.

Maria Rodriguez

4.9

out of

5

This crucible is a must-have for anyone who is serious about electron beam evaporation coating. It's a great value for the price.

Aiden Smith

4.7

out of

5

I'm very impressed with the performance of this crucible. It has exceeded my expectations and I highly recommend it.

Isabelle Dubois

4.8

out of

5

The conductive boron nitride crucible is a great choice for electron beam evaporation coating. It's easy to use and produces high-quality films.

Alireza Mohammad

4.6

out of

5

I've been using this crucible for a few weeks now and I'm very happy with it. It's very durable and has helped me to improve the quality of my coatings.

Sofia Martinez

4.9

out of

5

This crucible is a game-changer! It has significantly improved the efficiency of my electron beam evaporator and reduced my production costs.

Oliver Chen

4.7

out of

5

I highly recommend this crucible to anyone who is looking for a high-quality and durable option for electron beam evaporation coating.

Chloe Dubois

4.8

out of

5

The conductive boron nitride crucible is an excellent choice for high-temperature applications. It has excellent thermal stability and resists wetting by most molten metals.

Hassan Ali

4.6

out of

5

I'm very satisfied with this crucible. It has helped me to improve the quality of my coatings and reduce my production costs.

Isabella Garcia

PDF - 電子ビーム蒸着コーティング導電性窒化ホウ素るつぼ(BNるつぼ)

ダウンロード

のカタログ 薄膜蒸着部品

ダウンロード

のカタログ 蒸発るつぼ

ダウンロード

のカタログ 高純度黒鉛るつぼ

ダウンロード

のカタログ 薄膜蒸着材料

ダウンロード

のカタログ スパッタリングターゲット

ダウンロード

のカタログ 薄膜形成装置

ダウンロード

引用を要求

弊社の専門チームが 1 営業日以内にご返信いたします。 お気軽にお問い合わせ下さい!

関連製品

電子銃ビームるつぼ

電子銃ビームるつぼ

電子銃ビーム蒸着の場合、るつぼは、基板上に蒸着する材料を入れて蒸着するために使用される容器またはソースホルダーです。

電子ビーム蒸着コーティングタングステンるつぼ/モリブデンるつぼ

電子ビーム蒸着コーティングタングステンるつぼ/モリブデンるつぼ

タングステンおよびモリブデンのるつぼは、その優れた熱的特性と機械的特性により、電子ビーム蒸着プロセスでよく使用されます。

電子ビーム蒸着コーティング無酸素銅るつぼ

電子ビーム蒸着コーティング無酸素銅るつぼ

電子ビーム蒸着技術を使用する場合、無酸素銅るつぼを使用すると、蒸着プロセス中の酸素汚染のリスクが最小限に抑えられます。

窒化ホウ素 (BN) セラミック部品

窒化ホウ素 (BN) セラミック部品

窒化ホウ素(BN)は、高融点、高硬度、高熱伝導率、高電気抵抗率をもつ化合物です。その結晶構造はグラフェンに似ており、ダイヤモンドよりも硬いです。

電子ビーム蒸着黒鉛るつぼ

電子ビーム蒸着黒鉛るつぼ

主にパワーエレクトロニクス分野で使用される技術。炭素原料を電子ビーム技術を用いて材料蒸着により作製したグラファイトフィルムです。

窒化ホウ素 (BN) セラミックチューブ

窒化ホウ素 (BN) セラミックチューブ

窒化ホウ素 (BN) は、高い熱安定性、優れた電気絶縁特性、および潤滑特性で知られています。

窒化ホウ素 (BN) セラミック カスタム パーツ

窒化ホウ素 (BN) セラミック カスタム パーツ

窒化ホウ素 (BN) セラミックはさまざまな形状を持つことができるため、中性子線を避けるために高温、高圧、断熱、放熱を生成するように製造できます。

窒化ホウ素 (BN) るつぼ - リン粉末焼結

窒化ホウ素 (BN) るつぼ - リン粉末焼結

リン粉末焼結窒化ホウ素 (BN) るつぼは、滑らかな表面、高密度、無汚染、長寿命を備えています。

窒化ホウ素 (BN) セラミックス - 導電性複合材料

窒化ホウ素 (BN) セラミックス - 導電性複合材料

窒化ホウ素自体の特性により、誘電率、誘電損失が非常に小さいため、理想的な電気絶縁材料です。

窒化ホウ素(BN)セラミックロッド

窒化ホウ素(BN)セラミックロッド

窒化ホウ素 (BN) ロッドは、グラファイトと同様に最も強力な窒化ホウ素の結晶形であり、優れた電気絶縁性、化学的安定性、誘電特性を備えています。

有機物用蒸発るつぼ

有機物用蒸発るつぼ

有機物用の蒸発るつぼは、蒸発るつぼと呼ばれ、実験室環境で有機溶媒を蒸発させるための容器です。

電子ビーム蒸着 / 金メッキ / タングステンるつぼ / モリブデンるつぼ

電子ビーム蒸着 / 金メッキ / タングステンるつぼ / モリブデンるつぼ

これらのるつぼは、電子蒸着ビームによって蒸着される金材料の容器として機能し、正確な蒸着のために電子ビームを正確に向けます。

蓋付きアルミナ (Al2O3) るつぼ円筒実験室用るつぼ

蓋付きアルミナ (Al2O3) るつぼ円筒実験室用るつぼ

円筒型るつぼ 円筒型るつぼは最も一般的な形状の 1 つで、さまざまな材料の溶解や加工に適しており、取り扱いや洗浄が簡単です。

アルミメッキセラミック蒸着ボート

アルミメッキセラミック蒸着ボート

薄膜を堆積するための容器。アルミニウムコーティングされたセラミックボディを備えており、熱効率と耐薬品性が向上しています。さまざまな用途に適しています。

黒鉛蒸発るつぼ

黒鉛蒸発るつぼ

高温用途向けの容器。材料を極度の高温に保って蒸発させ、基板上に薄膜を堆積できるようにします。

アルミナ (Al2O3) セラミックるつぼ半円ボート蓋付き

アルミナ (Al2O3) セラミックるつぼ半円ボート蓋付き

るつぼは、さまざまな材料の溶解および加工に広く使用されている容器であり、半円形の舟形るつぼは、特殊な製錬および加工要件に適しています。素材や形状によって種類や用途は異なります。

六方晶系窒化ホウ素 (HBN) セラミックリング

六方晶系窒化ホウ素 (HBN) セラミックリング

窒化ホウ素セラミック (BN) リングは、炉設備、熱交換器、半導体処理などの高温用途で一般的に使用されます。

セラミック蒸着ボートセット

セラミック蒸着ボートセット

様々な金属や合金の蒸着に使用できます。ほとんどの金属は損失なく完全に蒸発できます。蒸発バスケットは再利用可能です。

アルミナるつぼ (Al2O3) カバー付き熱分析 / TGA / DTA

アルミナるつぼ (Al2O3) カバー付き熱分析 / TGA / DTA

TGA/DTA 熱分析容器は酸化アルミニウム (コランダムまたは酸化アルミニウム) で作られています。高温に耐えることができ、高温試験が必要な材料の分析に適しています。

実験用マッフル炉用アルミナ (Al2O3) セラミックるつぼ

実験用マッフル炉用アルミナ (Al2O3) セラミックるつぼ

アルミナセラミックるつぼは一部の材料や金属溶解ツールに使用されており、平底るつぼは安定性と均一性が高く、大量の材料を溶解および処理するのに適しています。

関連記事

カーボンナノチューブ成長用CVD炉

カーボンナノチューブ成長用CVD炉

化学蒸着 (CVD) 炉技術は、カーボン ナノチューブを成長させるために広く使用されている方法です。

詳細を見る
電子ビーム蒸着コーティング:利点、欠点、および応用

電子ビーム蒸着コーティング:利点、欠点、および応用

電子ビーム蒸着コーティングの長所と短所、そして産業における様々な用途について詳しく解説。

詳細を見る
セルコーティング用PECVDにおけるグラファイトボート

セルコーティング用PECVDにおけるグラファイトボート

効率的なセルコーティングのためのPECVDにおけるグラファイトボートの使用を探る。

詳細を見る
単結晶成長膜のコーティング法

単結晶成長膜のコーティング法

単結晶膜を成長させるためのCVD、PVD、エピタキシーなどの様々なコーティング法の概要。

詳細を見る
マグネトロンスパッタリングにおけるレニウムターゲットのグロー放電実現への挑戦

マグネトロンスパッタリングにおけるレニウムターゲットのグロー放電実現への挑戦

マグネトロンスパッタリングでレニウムターゲットが光らない理由を探り、最適化の提案を行う。

詳細を見る
Carbon Coating for Surface Modification of Silicon-Based Materials in Lithium-Ion Batteries

Carbon Coating for Surface Modification of Silicon-Based Materials in Lithium-Ion Batteries

This article discusses the application of carbon coatings to improve the performance of silicon-based anode materials in lithium-ion batteries.

詳細を見る
一般的な実験室での溶解法

一般的な実験室での溶解法

実験室における3つの主要な溶解技術の概要:アーク溶解、誘導溶解、懸濁溶解。

詳細を見る
PECVDナノコーティングの防水・防食以外の用途

PECVDナノコーティングの防水・防食以外の用途

防水膜、防錆膜、抗菌膜、親水膜、耐摩耗膜など、多様なPECVDナノコーティングの応用例を紹介。

詳細を見る
電子デバイスにおけるPECVDナノコーティング技術の応用

電子デバイスにおけるPECVDナノコーティング技術の応用

PECVDナノコーティング技術は、様々な電子デバイスの耐久性と信頼性を向上させます。

詳細を見る
マグネトロンスパッタリングにおけるセラミックターゲット中心領域の激しいアブレーションの解析

マグネトロンスパッタリングにおけるセラミックターゲット中心領域の激しいアブレーションの解析

本稿では、マグネトロンスパッタリングでセラミックターゲットの中心領域が激しくアブレーションする原因と解決策について述べる。

詳細を見る