薄膜蒸着部品
先進用途向け導電性窒化ホウ素BNセラミックス複合材
商品番号 : KM-D9
価格は以下に基づいて変動します 仕様とカスタマイズ
- Material
- 窒化ホウ素
配送:
お問い合わせ 配送詳細を確認してください オンタイムディスパッチ保証.
なぜ私たちを選ぶのか
信頼できるパートナー簡単な注文プロセス、高品質な製品、そしてお客様のビジネス成功のための専門サポート。
応用例
窒化ホウ素は耐熱性、耐薬品性に優れた化合物であり、その電気絶縁性および破壊電圧強度はアルミナの3〜4倍です。酸化雰囲気中では900℃まで、真空中で2000℃まで使用できる低摩擦係数。窒化ホウ素セラミックスは良好な電気的特性を持っています。セラミックスは電気を通さないため、電気絶縁体として使用できます。同時に、窒化ホウ素自体の特性により、誘電率と誘電正接が非常に小さいため、電気絶縁の理想的な材料です。
- 金属材料、希土類、セラミックスの焼結および製錬。
- グラファイトおよびアルミニウムセラミックスの代替。
- 高温電気炉部品。
- 金属蒸着るつぼ。
- 貴金属または特殊合金鋳造用の金型部品。
- 高温支持部品および応力部品。
- 金属溶解供給管およびノズル。
詳細と部品





表示されている製品はさまざまなサイズで入手可能であり、カスタムサイズもリクエストに応じて入手可能です。
利点
- 良好な機械加工性
- 低い誘電率
- 優れた絶縁破壊強度
- 溶融金属に対する濡れ性が低い
- 比較的高い熱伝導率と低い熱膨張
- 他のセラミックスと比較して高い耐熱衝撃性
- 非常に高い動作温度と適切な不活性ガス保護
FAQ
窒化ホウ素セラミック部品の用途は何ですか?
アドバンストセラミックスとは?
窒化ホウ素セラミック部品を使用する利点は何ですか?
アドバンスト・セラミックスの主な種類は?
窒化ホウ素セラミック部品を選択する際にはどのような点に注意する必要がありますか?
アドバンストセラミックスの用途は?
窒化ホウ素セラミック部品の製造にはどのような製造プロセスが使用されますか?
アドバンスト・セラミックスはどのように製造されるのですか?
アドバンストセラミックスを使用する利点は何ですか?
アルミナセラミックスとジルコニアセラミックスの違いは何ですか?
なぜ炭化ケイ素セラミックスが高温用途に使われるのか?
窒化ホウ素セラミックスの特徴は?
アドバンストセラミックスはどのようにエネルギー効率に貢献するのか?
4.9
out of
5
Quick delivery and the quality is top-notch.
4.7
out of
5
Great value for money, performs as expected.
4.8
out of
5
Amazing product, exceeded my expectations.
4.6
out of
5
Durable and reliable, would recommend.
4.9
out of
5
State-of-the-art technology, impressive performance.
4.7
out of
5
Easy to use and maintain, a valuable addition to our lab.
4.8
out of
5
Great customer service, prompt response to inquiries.
4.6
out of
5
Excellent product, worth every penny.
4.9
out of
5
Accurate and reliable results, highly recommend.
4.7
out of
5
User-friendly interface, makes data analysis a breeze.
4.8
out of
5
Versatile and adaptable, meets our diverse needs.
4.6
out of
5
Compact and portable, easy to transport and store.
4.9
out of
5
Exceptional craftsmanship, built to last.
4.7
out of
5
Intuitive and user-friendly, simplifies complex tasks.
引用を要求
弊社の専門チームが 1 営業日以内にご返信いたします。 お気軽にお問い合わせ下さい!
関連製品
先進エンジニアリングファインセラミックス 窒化ホウ素(BN)セラミック部品
窒化ホウ素(BN)は、融点が高く、硬度が高く、熱伝導率が高く、電気抵抗率が高い化合物です。その結晶構造はグラフェンに似ており、ダイヤモンドよりも硬いです。
ファインセラミックス アルミナセラミックサガー ファインコランダム用
アルミナサガー製品は、耐高温性、良好な熱衝撃安定性、小さい膨張係数、剥離防止、良好な粉化防止性能を備えています。
高機能エンジニアリングファインセラミックス 窒化アルミニウム(AlN)セラミックシート
窒化アルミニウム(AlN)は、シリコンとの適合性に優れているという特徴があります。構造用セラミックスの焼結助剤や強化相として使用されるだけでなく、その性能はアルミナをはるかに凌駕します。
エンジニアリング 高度なファインセラミックス アルミナ Al2O3 クルーシブル 蓋付き 円筒形 実験用クルーシブル
円筒形クルーシブル 円筒形クルーシブルは最も一般的なクルーシブルの形状の1つで、さまざまな材料の溶解や加工に適しており、取り扱いやすく、掃除も簡単です。
エンジニアリング先進ファインセラミックス用高純度アルミナ造粒粉末
通常のアルミナ造粒粉末は、従来のプロセスで調製されたアルミナ粒子であり、幅広い用途と良好な市場適応性を備えています。この材料は、高純度、優れた熱安定性、化学的安定性で知られており、さまざまな高温および従来の用途に適しています。
耐摩耗用途向けエンジニアリング先進ファインセラミックス酸化アルミニウム Al2O3 セラミックワッシャー
アルミナ耐摩耗セラミックワッシャーは放熱に使用され、アルミニウムヒートシンクの代替が可能で、耐熱性、高い熱伝導性を備えています。
エンジニアリング先進ファインセラミックス用精密加工窒化ケイ素(SiN)セラミックシート
窒化ケイ素プレートは、高温での均一な性能により、冶金業界で一般的に使用されるセラミック材料です。
炭化ケイ素(SiC)セラミックシート 耐摩耗性エンジニアリング 高性能ファインセラミックス
炭化ケイ素(SiC)セラミックシートは、高純度炭化ケイ素と超微粉末で構成され、振動成形と高温焼結によって形成されます。
エンジニアリング先進ファインセラミックス用精密加工ジルコニアセラミックボール
ジルコニアセラミックボールは、高強度、高硬度、PPM摩耗レベル、高い破壊靭性、優れた耐摩耗性、高比重といった特性を備えています。
エンジニアリング先進ファインセラミックス用アーク形状アルミナセラミックるつぼ 高温耐性
科学探査と工業生産の旅において、細部はすべて重要です。当社の優れた高温耐性と安定した化学的特性を持つアーク形状アルミナセラミックるつぼは、実験室や工業分野で強力なアシスタントとなっています。高純度アルミナ材料で作られ、精密なプロセスで製造されており、極限環境での優れた性能を保証します。
エンジニアリング 高度ファインセラミック ヘッドツイーザー 先細エルボージルコニアセラミックチップ付き
ジルコニアセラミックツイーザーは、先進的なセラミック素材で作られた高精度ツールであり、特に高精度と耐食性が求められる作業環境に適しています。このタイプのツイーザーは、優れた物理的特性を持つだけでなく、生体適合性があるため、医療および実験分野でも人気があります。
エンジニアリング先進ファインセラミックス用精密加工イットリア安定化ジルコニアセラミックプレート
イットリア安定化ジルコニアは、高い硬度と耐熱性を特徴とし、耐火物や特殊セラミックスの分野で重要な材料となっています。
エンジニアリング先進ファインセラミックス加工用カスタムメイドアルミナジルコニア特殊形状セラミックプレート
アルミナセラミックスは、良好な導電性、機械的強度、高温耐性を持ち、ジルコニアセラミックスは、高強度と高靭性で知られ、広く使用されています。
高温耐性と絶縁性を備えたエンジニアリング先進ファインセラミックス用高品質アルミナセラミックス製ねじ
アルミナセラミックス製ねじは、99.5%アルミナ製の締結部品で、優れた耐熱性、電気絶縁性、耐薬品性が要求される過酷な用途に最適です。
エンジニアリング先進ファインセラミックス用耐熱耐摩耗性アルミナ Al2O3 プレート
高温耐摩耗性絶縁アルミナプレートは、優れた絶縁性能と耐熱性を備えています。
エンジニアリング先進ファインセラミックス用高温アルミナ(Al2O3)炉心管
高温アルミナ炉心管は、アルミナの高い硬度、優れた化学的安定性、鋼鉄の利点を組み合わせ、優れた耐摩耗性、耐熱衝撃性、耐機械衝撃性を備えています。
実験室マッフル炉用エンジニアリング先進ファインアルミナAl2O3セラミックるつぼ
アルミナセラミックるつぼは、一部の材料および金属溶融ツールで使用され、平底るつぼは、より安定性と均一性で、より大きなバッチの材料の溶融および処理に適しています。
関連記事
カーボンナノチューブ成長用CVD炉
化学蒸着 (CVD) 炉技術は、カーボン ナノチューブを成長させるために広く使用されている方法です。
六方晶窒化ホウ素:複合セラミック材料の性能向上
様々な複合セラミックスにおけるh-BNの役割を探求し、その特性と応用に焦点を当てる。
研究開発におけるラボプレスの将来
ラボ用プレスは、製薬、材料科学、エレクトロニクスなどの幅広い業界の研究開発に不可欠なツールです。
窒化ホウ素るつぼ使用ガイドライン
窒化ホウ素るつぼの適切な使用、注意事項、および適合性に関する指示。
半導体用途における精密セラミックス
半導体装置における精密セラミックスの用途、特性、製造プロセスを探る。
エネルギー変換アプリケーション用精密セラミック材料
ヒーター、圧電セラミックス、固体酸化物燃料電池など、エネルギー変換技術に使用される各種セラミック材料の概要。
高温工学セラミックスの構造と物性
さまざまな産業における高温工学セラミックスの用途、構造的特徴、性能上の利点を探る。
セラミック材料の工学:航空宇宙、電子情報、新エネルギー、環境保護への応用
この記事では、航空宇宙、電子情報、新エネルギー、環境保護の各分野におけるエンジニアリング・セラミック材料の多様な用途を探る。
酸化物セラミックスを理解する:概念、分類、応用
この記事では、酸化物セラミックスの概念、分類、多様な用途について掘り下げ、さまざまなハイテク分野におけるその重要性を強調する。
セラミックスの機械的特性と構造強化
長所、短所、改善方法など、セラミックスの機械的特性を詳細に分析。
PTFEの高温・耐食性:産業界で不可欠な理由
ポリテトラフルオロエチレン(PTFE)が産業界、特に過酷な環境下での用途で不可欠な材料となっている理由は、高温と耐食性におけるポリテトラフルオロエチレン(PTFE)独自の利点にある。
ポリテトラフルオロエチレン(PTFE):低摩擦係数が産業を発展させる
ポリテトラフルオロエチレン(PTFE)の低摩擦係数のユニークな利点を探求し、摩耗の低減や機器の効率向上といった産業技術の進歩と革新をどのように促進するかを分析する。
