よくある質問

Related to: 実験室用 1700℃ マッフル炉

高温炉で使用される材料は何ですか?極度の熱に最適なセラミックスの選択

高温炉管の主要材料として高純度アルミナが選ばれる理由を発見し、耐熱衝撃性と化学的不活性のバランスを理解しましょう。

電気炉の最高温度は何度ですか?あなたの研究室や鋳造所に最適な熱を見つけましょう

電気炉の最高温度は1100℃から1800℃超まで幅があります。用途に応じた抵抗加熱と高周波誘導加熱の違いを学びましょう。

材料の熱処理において最も重要な3つの要因は何ですか?温度、時間、冷却速度の制御

温度、保持時間、冷却速度を正確に制御することで材料の熱処理を習得し、望ましい硬度、靭性、強度を実現します。

熱処理の品質に影響を与える要因は?温度、雰囲気、プロセス制御の習得

高品質な熱処理の鍵となる要因を発見しましょう:正確な温度制御、炉内雰囲気の選択、そして材料特性を最適化するための加熱・冷却速度の管理。

燃料を使わずに金属を溶解するために使用される機械の誘導加熱の周波数範囲はどれくらいですか?溶解プロセスを最適化する

金属溶解のための誘導加熱周波数(30Hz~16kHz)が、金属の種類、量、効率に基づいてどのように選択されるかを学びましょう。

誘導炉の周波数とは何ですか?用途に合った適切な周波数を選択する

誘導炉の周波数(50 Hz~100 kHz以上)が、溶解、硬化、ろう付けにおける加熱深度、攪拌、効率にどのように影響するかを発見してください。

るつぼ炉のプロセスとは?簡単な間接金属溶解のガイド

アルミニウムや真鍮などの金属を溶解するための、るつぼ炉プロセスのステップバイステップの手順を学びましょう。その利点、制限、および理想的な用途を理解します。

電気炉溶解とは?精密で効率的な金属溶解ガイド

電気炉溶解が誘導またはアーク技術をどのように使用して、精密な温度制御、高純度、および金属の迅速な溶解を実現するかをご覧ください。

高周波誘導加熱とは何ですか?精密な表面硬化とろう付けをマスターする

高周波誘導加熱(100~500 kHz)が表皮効果を利用して、精密な表面硬化、ろう付け、局所的な熱処理をどのように行うかを発見してください。

誘導加熱でアルミニウムを加熱できますか?はい、高周波産業システムを使用すれば可能です

特殊な高周波誘導加熱装置が、アルミニウムの低い抵抗率と非磁性という特性を克服し、アルミニウムを効果的に加熱・溶解する方法を学びましょう。

誘導炉とアーク炉の違いは何ですか?大量精錬と精密溶解のガイド

電気アーク炉と誘導炉を比較し、熱発生、効率、鋼の品質、そして用途に合った適切な技術の選び方を理解しましょう。

誘導炉は何に使われますか?効率的な金属溶解と加熱をマスターする

誘導炉が電磁誘導を利用して、鋳造所やリサイクルにおいて鋼、銅、アルミニウムなどの金属を迅速かつ均一に溶解する方法を学びましょう。

カーボンるつぼの温度範囲はどのくらいですか?適切な雰囲気で性能を最大化する

カーボンるつぼは不活性ガス中では3000°Cを超えて耐えられますが、空気中では500°Cを超えると酸化します。雰囲気が温度限界をどのように決定するかを学びましょう。

るつぼ炉の利点は何ですか?研究室および小規模生産向けの精密な溶解を実現

るつぼ炉の主な利点を発見してください:多様な材料への汎用性、精密な温度制御、および小ロット溶解におけるコスト効率。

熱処理の利点と欠点は何ですか?用途に合わせて材料特性をマスターしましょう

強度と靭性の向上から、歪みや表面劣化などのリスク管理まで、熱処理の長所と短所を探ります。

熱処理プロセスにおける浸炭とは何ですか?靭性の高いコアを持つ硬い表面を作成する

浸炭が低炭素鋼の表面に炭素を添加し、耐摩耗性の表面と靭性があり耐衝撃性のあるコアをどのように作り出すかを学びましょう。これはギアやベアリングに最適です。

アディティブマニュファクチャリングにおける脱脂(デバインディング)とは?強固な金属部品のための重要なステップ

脱脂は、3Dプリントされた金属部品からポリマーバインダーを除去し、焼結の準備をします。この熱処理プロセスが部品の完全性をどのように保証するかをご覧ください。

焼結温度を下げるにはどうすればよいですか?低コストで高密度材料を実現する

焼結助剤、ナノ粒子粉末、加圧技術を使用して焼結温度を下げるための主要な方法を学び、効率的な材料加工を実現します。

焼鈍は炉で行われますか?材料特性のための熱処理プロセスの習得

応力除去から延性および耐食性の向上まで、焼鈍に精密な熱制御のために炉が必要な理由を発見してください。

焼なまし工程のステップとは?材料特性を最適化するための3つの段階を習得する

焼なましの3つの主要な段階(回復、再結晶、粒成長)を学びましょう。微細構造を制御して、望ましい硬度と延性を実現します。

真空熱処理の利点は、スケールや脱炭の低減ですか?清浄でクリーンな金属部品を実現します。

真空熱処理が反応性ガスを除去することで、スケールや脱炭をどのように排除し、優れた表面完全性を確保し、後処理を削減するかを学びましょう。

酸化アルミニウムのAldにおける基板加熱ステージの役割とは?熱プロセスウィンドウの習得

加熱ステージと炉が、活性化エネルギーと熱分解のバランスを取ることによって、酸化アルミニウムのALDプロセスウィンドウをどのように定義するかを学びましょう。

Msw合成ガスの乾式改質には、なぜ高精度管状炉が必要なのですか?触媒活性とH2:Co比の最適化

800℃以上での熱安定性と触媒活性を確保するMSW合成ガスの乾式改質において、高精度管状炉がなぜ重要なのかを学びましょう。

熱分解に最適なプラスチックの種類は?ポリオレフィンから高収率オイルを抽出する

ポリエチレン(PE)とポリプロピレン(PP)が熱分解に最適なプラスチックであり、高品質のオイルを生成する理由を発見してください。一方、PVCやPETは大きな課題をもたらします。

粉末冶金における焼結の種類とは?固相、液相、加圧法のガイド

粉末冶金における固相焼結、液相焼結、加圧焼結について学びましょう。密度、強度、コストに応じて適切な方法を選択してください。

鉄鋼産業における焼結のプロセスとは何ですか?高効率な高炉操業のための重要なステップ

焼結がいかにして鉄鉱石微粉を多孔質で強度の高い材料に変え、高炉での効率向上、コークス使用量の削減、操業の安定化に貢献するかを学びましょう。

焼結の重要性とは?溶融せずに丈夫で複雑な部品を実現

焼結がどのようにして粉末材料を丈夫で高密度の部品に変え、複雑な形状と高性能材料を可能にするかをご覧ください。

焼結と溶解の違いは何ですか?固相プロセスと液相プロセスのガイド

材料加工における固相融合と液相変態:焼結と溶解の主な違いを学びましょう。

焼結の利点は何ですか?粉末から優れた材料特性を実現する

焼結が材料の密度、強度、導電性をどのように向上させ、高性能部品のニアネットシェイプ製造を可能にするかを発見してください。

従来の熱分解は何度で行われますか?目的の製品に最適な温度を解き放つ

従来の熱分解温度(400-900°C)が製品収率(バイオ炭、バイオオイル、合成ガス)を決定します。目標に合わせて最適化する方法を学びましょう。

焼結の効果とは?粉末を緻密で丈夫な部品に変える

焼結がどのようにして、粉末粒子を融点以下で融合させることにより、気孔率を低減し、密度を高め、機械的強度を向上させるかを学びましょう。

炭素るつぼの最高温度は何度ですか?適切な雰囲気で高温性能を解き放つ

炭素るつぼは3000℃に達することができますが、それは不活性雰囲気下でのみです。雰囲気、純度、用途がその実用的な限界をどのように決定するかを学びましょう。

バッチ式炉の動作温度はどのくらいですか?特定のプロセスに合わせて200°Cから3000°Cまで

バッチ炉の温度範囲は200°Cから3000°Cを超え、金属焼鈍、セラミック焼結、黒鉛化などの用途に合わせて調整されます。

スローパイロリシスの温度範囲は?正確な熱制御でバイオ炭生産をマスターしましょう

スローパイロリシスは300°Cから600°Cで実施されます。温度、昇温速度、滞留時間が、ラボやプロジェクトにおけるバイオ炭収率をどのように制御するかを学びましょう。

バイオマスの熱分解生成物は何ですか?バイオ炭、バイオオイル、合成ガスを解き明かす

バイオマス熱分解の3つの主要な生成物、バイオ炭、バイオオイル、合成ガスについて学びましょう。プロセス条件がエネルギー、燃料、土壌の健康のための収率をどのように制御するかを理解します。

熱分解の温度範囲はどのくらいですか?バイオ炭、バイオオイル、または合成ガス用に最適化します。

熱分解温度(300~900℃)が、バイオ炭、バイオオイル、合成ガスといった生成物の収率をどのように制御するかを学びましょう。目的に合った適切な範囲を選択してください。

焼結プロセスの機能は何ですか?粉末を高性能部品に変換する

焼結がどのように粒子を結合させて強固で高密度な部品を形成し、複雑な形状や高融点材料のコスト効率の高い製造を可能にするかを発見してください。

焼結プロセスはどのように機能しますか?粉末を高密度で高性能な部品に変える

焼結がどのようにして融点以下の熱を使用して粉末粒子を融合させ、最小限の廃棄物で強力で複雑な部品を作成するかを学びましょう。

焼結プロセスの欠点は何ですか?密度、コスト、サイズにおける主な制限

焼結の主な欠点(残留多孔性、高い金型コスト、サイズ制限など)を探り、情報に基づいた製造上の意思決定を行いましょう。

誘導加熱はアルミニウムに有効ですか?非磁性金属を効率的に加熱するためのガイド

高周波要件や効率的な結果を得るための最適化された装置など、誘導加熱がアルミニウムにどのように機能するかを学びましょう。

1000平方フィートの住宅の炉の費用はいくらですか?詳細なコストとサイジングガイド

1000平方フィートの住宅の炉の費用:ユニット価格は1,200ドルから2,000ドル。BTU要件、効率、設置が総投資額にどのように影響するかを学びましょう。

超二相ステンレス鋼の溶解における真空誘導炉の役割は何ですか?高純度合金の卓越性を達成する

真空誘導炉が、酸化や不純物を防ぐことで、27% Cr 超二相ステンレス鋼の純度と正確な組成をどのように確保するかをご覧ください。

650℃のCo2酸化実験における高圧水平管状炉の機能は何ですか?

高圧管状炉とニッケル基合金が、650℃、3.5MPaで1000時間のCO2酸化実験を可能にする方法をご覧ください。

Tio2の相転換にプログラム制御炉が必要なのはなぜですか?アナターゼナノチューブを完璧に実現する

プログラム加熱による非晶質TiO2から安定なアナターゼナノチューブへの変換に、精密な熱制御が不可欠である理由を学びましょう。

真空石英管の主な用途は何ですか?高純度バッテリー材料合成を確実にする

真空石英管が、Ag0.7V2O5のような敏感なバッテリー材料の合成において、酸化を防ぎ化学量論を維持する方法を学びましょう。

高純度水素雰囲気炉の作業メカニズムとは?タングステン焼結効率をマスターする

水素雰囲気炉が、3050°Cでの酸化物還元、原子拡散、および濡れ性の向上を通じてタングステンの焼結をどのように可能にするかを学びましょう。

産業用ホットアイソスタティックプレス(Hip)の主な機能は何ですか?粉末合金の緻密化を最大化する

ホットアイソスタティックプレス(HIP)が熱と圧力を利用して気孔率を除去し、ガスアトマイズ粉末合金の完全な緻密化を達成する方法を学びましょう。

金属セラミック膜に雰囲気制御焼結炉が必要な理由は何ですか?精密な同時焼結をマスターする

酸化を防ぎ、熱収縮を管理して欠陥のない製造を実現するために、雰囲気制御が金属セラミック膜にとって不可欠である理由を学びましょう。

雰囲気炉は、Li2Zro3コーティングされたNcm622材料の表面炭酸塩含有量をどのように制御するために使用できますか?

雰囲気炉内のガス組成が、NCM622カソード性能の最適化のためにLi2CO3の形成/分解をどのように調整するかを学びましょう。

Ti2Alalnb/Ta15複合材の製造における真空熱間プレス炉の役割とは?シームレスな拡散接合を実現する

真空熱間プレス炉が、精密な熱、圧力、酸化防止を通じてTi2AlNb/TA15複合材の接合を可能にする仕組みを学びましょう。

炭素系固体酸触媒(Cbsc)に雰囲気炉が必要な理由:不完全炭化の習得

窒素雰囲気炉がCBSC合成に不可欠である理由を学び、燃焼を防ぎ、高い触媒酸密度を確保しましょう。

Sicf/Tc17/Tb8複合材における真空熱間プレス炉の主な役割は何ですか? 優れた材料密度を達成する

SiCf/TC17/TB8複合板の製造において、真空熱間プレス炉が拡散接合と高密度化をどのように促進するかを学びましょう。

ポリマーセラミック複合電解質の噴霧コーティング後に実験室用ホットプレスが必要なのはなぜですか? 必須の密度。

実験室用ホットプレスが複合電解質の空隙を除去し、ポリマーの流れを誘発してイオン伝導率を最大化する方法を学びましょう。

Pyr-Ihfにとって、雰囲気保護加熱装置が必要なのはなぜですか?材料合成の精度を達成する

脱水によるパイロクロア型フッ化鉄水酸化物(Pyr-IHF)の合成において、チューブ炉と不活性窒素フローが不可欠である理由を学びましょう。

不活性雰囲気と還元雰囲気とは何ですか?実験室のプロセス制御をマスターしましょう

不活性雰囲気と還元雰囲気の主な違いを学びましょう。実験室プロセスにおける受動的な保護と能動的な化学変化の違いです。

石英ガラス管は何に使われますか?高温・高純度用途に不可欠

石英ガラス管が、その独自の熱的・光学的特性により、半導体製造、高温炉、UV用途でどのように活用されているかをご覧ください。

焼鈍(アニーリング)プロセス中に何が起こるのか?制御された軟化と応力除去のガイド

精密な熱処理段階を通じて、焼鈍がどのように金属を軟化させ、内部応力を除去し、延性を向上させるかを学びましょう。

拡散炉とは?半導体製造の原動力

拡散炉がどのようにして高温と制御された雰囲気を利用し、半導体製造における熱酸化やドーピングなどのプロセスを行うのかを学びましょう。

高炉における焼結プロセスの役割とは?鉄鉱石微粉を高性能な原料に転換する

焼結がどのようにして微細な鉄鉱石を多孔質で均一な高炉原料に凝集させ、効率を最適化し、安定した鉄の生産を保証するかを学びましょう。

めっきの標準的な厚さはどれくらいですか?耐久性、耐食性、コストを最適化する

耐摩耗性、耐食性、寸法管理のために、適切なめっき厚(0.0005インチ~0.0015インチ)の選択方法を学びましょう。

バッチ式炉とは何ですか?敏感なアプリケーションに最適なプロセス制御を実現

バッチ炉が、精密な熱処理、不活性雰囲気処理、クリーンルーム互換性のために、どのように密閉された隔離された環境を提供するのかをご覧ください。

垂直管状炉とは何ですか?優れた均一性とプロセス制御のために重力を活用する

垂直管状炉が、制御された雰囲気下での粉末処理、CVD、および急速な焼入れのために、重力と熱力学をどのように利用するかを発見してください。

マルチポジション炉とは?柔軟なHvac設置のための究極ガイド

マルチポジション炉が、あらゆる住宅レイアウトに設置の柔軟性をどのように提供し、HVAC専門家が直面する主要な物流上の課題をどのように解決するかを学びましょう。

焼結法とは?粉末から丈夫で高密度の部品を製造するためのガイド

焼結法を学びましょう:金属やセラミックスにおいて、粉末粒子を融点以下の温度で加熱し、固体の高密度物体に結合させる熱ベースのプロセスです。

ロータリー炉の機能は何ですか?均一で連続的な熱処理を実現すること

ロータリー炉が回転と傾斜を利用して、粉末や粒状材料の均一な加熱、混合、効率的な連続処理をどのように実現するかをご覧ください。

製鉄業界における焼結のプロセスとは何ですか?エンジニアリングされた原料で高炉効率を最適化する

焼結がどのようにして鉄鉱石の微粉を多孔質で効率的な高炉原料に変換し、製鉄における安定性を向上させ、燃料消費を削減するかを学びましょう。

焼結の限界とは?粉末冶金におけるトレードオフの理解

焼結の主な限界として、寸法収縮、残留気孔、高エネルギーコスト、材料の制約などを探ります。

焼結効果とは?粉末を耐久性のある高性能部品に変える

焼結がいかにして粉末粒子を融点以下の温度で強力で緻密な固体に融合させ、強度、導電性を高め、複雑な形状を可能にするかをご覧ください。

誘導溶解炉の構造とは何ですか?主要コンポーネントと溶解原理のガイド

誘導溶解炉の構造:るつぼ、コイル、電源について学びましょう。その設計がいかに効率的でクリーンな金属溶解を可能にするかを理解します。

アニーリング工程の目的は何ですか?Dna増幅と材料特性における安定性の実現

DNA増幅のためのPCRにおけるアニーリング工程と、応力緩和および延性向上のための材料科学におけるその重要な役割を学びましょう。

ロータリーキルンの動作原理とは?連続的で均一な熱処理を実現する

ロータリーキルンが回転と重力を利用して材料を混合、加熱、輸送し、大量の均一な熱処理を実現する方法を学びましょう。

熱分解温度がバイオ炭の特性に与える影響とは?収量と品質のトレードオフをマスターする

熱分解温度がバイオ炭の収量、安定性、pH、多孔性をどのように制御するかを学びましょう。土壌改良、炭素隔離、またはろ過のためのプロセスを最適化します。

木材の熱分解によって放出されるものは何ですか?バイオ炭、バイオオイル、合成ガスの解明

木材の熱分解により、バイオ炭、バイオオイル、合成ガスが放出されます。温度とプロセス制御がこれらの貴重な製品の収率をどのように決定するかを学びましょう。

マイクロ波焼結の用途とは?より速く、より均一なセラミック加工を実現

マイクロ波焼結がどのように体積加熱を利用して、より速い加工、低エネルギー消費、そして優れたセラミック材料特性を実現するかを発見してください。

化学気相成長(Cvd)の技術にはどのようなものがありますか?熱Cvd、プラズマCvd、Lpcvd手法のガイド

熱CVD、PECVD、LPCVDなどのCVD技術について学びましょう。薄膜堆積のためのエネルギー源、圧力、用途を比較します。

融点の応用とは?接合、鋳造、合金化のための材料制御をマスターする

融点が製造業や材料科学において、接合、鋳造、合金の作成、特性の変更にどのように利用されているかをご覧ください。

必要な溶解炉のサイズはどれくらいですか?最大の効率を実現するための最適な組み合わせを見つけましょう

生産能力とエネルギーコストを最適化するために、容量(kg)と電力(kW)に基づいて適切な溶解炉のサイズを選択する方法を学びましょう。

アルミニウムの熱処理の目的とは?高強度と設計された性能を引き出す

6061や7075などのアルミニウム合金が、制御された析出硬化プロセスを通じて、強度、硬度、靭性をどのように向上させるかを学びましょう。

焼結の危険性とは何ですか?プロセス、財務、安全のリスクを管理する

焼結の危険性:予測不可能な収縮、高コスト、安全リスクについて学びましょう。部品製造を成功させるために、これらの課題を軽減してください。

焼結できる材料とは?金属、セラミックス、複合材料の可能性を解き放つ

焼結は、ステンレス鋼やチタンなどの金属、アルミナやジルコニアなどのセラミックス、およびカスタム複合材料で機能します。適切な材料の選び方を学びましょう。

セラミック材料を焼結するとどうなりますか?粉末から緻密な固体への変態

焼結が、原子拡散、緻密化、微細構造の変化を通じて、弱いセラミック粉末を緻密で強固な固体へとどのように変態させるかを学びましょう。

熱間プレス焼結とは?先進材料の優れた密度と性能を実現

熱間プレス焼結は、熱と圧力を同時に使用して、高密度で微細な結晶粒の材料を作成します。セラミックスや金属におけるその利点について学びましょう。

溶解炉の目的とは?鋳造と合金化のための材料変換

溶解炉の核となる目的を発見しましょう:鋳造、合金化、精製のために材料を液化することです。さまざまな炉の種類とその用途について学びましょう。

焼結の4つの段階とは?精密な材料緻密化へのガイド

結合剤焼失、ネック成長、緻密化、粒成長という焼結の4つの主要段階を学び、材料の密度、強度、気孔率を制御しましょう。

チューブ炉のチューブは何でできていますか?高温での成功のために正しい材料を選びましょう

チューブ炉のチューブに使用される材料(セラミック、石英、金属合金)と、温度と雰囲気のニーズに合わせて最適なものを選択する方法を発見してください。

歯科用ファーネスとは?丈夫で生体に近い歯科修復物を作成するための精密オーブン

歯科用ファーネスが精密な熱サイクルを使用して、ジルコニアの焼結、ポーセレンの焼成、セラミックのプレスを行い、耐久性のあるクラウン、ブリッジ、ベニアを作成する方法を学びましょう。

電気炉で鋼を溶かすことは可能ですか?適切な加熱技術があれば可能です。

なぜ電気誘導炉だけが1370°Cを超える温度に確実に到達し、鋼を溶解できるのか、そして他のタイプの炉が不十分である理由を発見してください。

誘導溶解炉の周波数は?適切な周波数で溶解プロセスを最適化しましょう

誘導溶解炉の一般的な動作周波数(300~1000 Hz)と、それが特定の金属の溶解速度、攪拌、効率にどのように影響するかを発見してください。

真空ろう付け炉の動作原理とは? 超クリーンで高強度の金属接合を実現

真空ろう付け炉がどのようにして酸素や汚染物質を除去し、航空宇宙、医療、ハイテク産業における優れた接合のために強力でフラックスフリーな接合部を作り出すかをご覧ください。

焼結と熱間プレスは同じですか?より良い材料性能のための重要な違いを解き明かす

焼結と熱間プレス(ホットプレス)の違いを発見しましょう。密度、特性、コストにおける熱のみと熱+圧力の違い。あなたの研究室に最適なプロセスを選択してください。

ホット等方圧プレス(Hip)は、炭化ケイ素の製造におけるどのような問題を解決しますか?最大密度を実現するための欠陥除去

ホット等方圧プレス(HIP)が炭化ケイ素の微細孔や亀裂をどのように除去し、強度と信頼性を高めて実験の成功につなげるかを学びましょう。

合金試料の予備酸化工程において、実験室用真空炉または雰囲気炉はどのように信頼性を確保していますか?

合金試験において、実験室用炉が精密な温度、時間、雰囲気制御により信頼性の高い予備酸化をどのように保証するかを学びましょう。

What Is The Function Of An Induction Melting Furnace In Titanium Recovery From Red Mud? High-Heat Separation Guide

Learn how induction and arc furnaces enable titanium recovery from red mud through ultra-high temperature reduction smelting and phase separation.

焼結に使用できる金属の種類は?焼結合金と非鉄金属の専門家ガイド

鉄系合金からステンレス鋼、高性能用途向けの非鉄金属まで、焼結に適した金属を探る。

ホット等方圧加圧(Hip)装置は、316L粉末をどのようにして緻密化するのか?理論密度に近い密度を達成する

HIP装置が等方圧と熱を使用して、316Lオーステナイト系ステンレス鋼の気孔率を除去し、微細構造を精製する方法を学びましょう。

炭素被覆シリコン(C@Si)アノード材料の準備に、なぜ雰囲気管状炉が必要なのですか?

C@Siアノードに雰囲気管炉が不可欠である理由:酸化を防ぎ、導電性炭化を保証します。

Csiチューブ炉の設計要件は何ですか?垂直ブリッジマン法をマスターする

高純度ヨウ化セシウム結晶成長における精密な垂直温度勾配と安定した機械的移動がなぜ重要なのかを学びましょう。

Jtsにおいて、チタン塩混合物の処理にプラズマアーク溶解炉が必要なのはなぜですか?純チタンインゴットの製造

JTSプロセスにおいて、プラズマアーク溶解が、汚染や蒸発なしにチタンを塩から分離するために不可欠である理由を学びましょう。

真空熱間プレス機は銅-Mos2-Moの性能をどのように向上させるか?優れた材料密度と性能を実現

真空熱間プレスが、従来の製法よりも優れた銅-MoS2-Moの微細構造を作り出すために、気孔率をなくし、塑性流動を誘発する方法を学びましょう。

ハイブリッドFast/Spsにおける補助ヒーターが解決する課題とは?大型サンプルの温度勾配の解消

ハイブリッドFAST/SPSシステムにおける補助ヒーターが、どのようにして放射状の温度勾配を解消し、精密な予熱を可能にするかをご覧ください。