あなたの研究室に高品質の機器と材料を提供する、信頼できる世界規模のサプライヤー!
について
ブログ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
製品
サンプルの準備
静水圧プレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
ガラス素材
バイオ化学装置
ロータリーエバポレーター
ガラスリアクター
高圧反応器
短経路蒸留
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
知識
会社
私たちについて
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
サービスサポート
お問い合わせ
メニュー
メニューを閉じる
サンプルの準備
静水圧プレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
ガラス素材
バイオ化学装置
ロータリーエバポレーター
ガラスリアクター
高圧反応器
短経路蒸留
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
知識
ブログ
について
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
よくある質問 -
縦型高温黒鉛化炉
黒鉛炉の温度は何度ですか?高度なアプリケーション向けに極度の熱を実現
黒鉛炉の温度範囲(2200℃~3000℃)と、材料合成、熱処理、分析化学におけるその用途をご覧ください。
黒鉛炉の温度範囲は?精密用途の極限熱を実現
最大 3000°C に達するグラファイト炉の温度範囲と、焼結やアニーリングなどの高温プロセスにおけるその利点を発見します。
高温黒鉛材料とは?極熱用途に不可欠
高温グラファイト材料の特性、用途、および極限環境における産業用加熱システムの利点を発見してください。
真空炉はどこまで高温にできるのか?その極熱能力を知る
真空炉がどのようにして 2000℃ まで到達するのか、またその温度性能、メンテナンス、トラブルシューティングに影響を与える要因について学びます。
黒鉛炉の利点とは?高温効率と多様性を引き出す
高速加熱、温度均一性、高温用途でのコスト効率など、黒鉛炉の主な利点をご覧ください。
黒鉛炉の目的は?微量金属の精密分析について
グラファイトファーネスが、環境、臨床、産業アプリケーションにおいて、高感度でコンタミネーションを最小限に抑えながら、いかに精密な微量金属分析を可能にしているかをご覧ください。
グラファイトは高温に強い?その優れた熱特性を知る
熱安定性、急速加熱、耐衝撃性など、グラファイトが高温用途に優れている理由をご覧ください。冶金や航空宇宙などの産業に最適です。
炭化炉とは?有機廃棄物を貴重な炭に変える
炭化炉がバイオマス、木材、農業廃棄物を燃料、濾過、産業用途に使用する木炭にどのように変換するかを学びます。
真空炉の最高温度は?主な要因と範囲を知る
真空炉の最高温度範囲(1,200℃~3,000℃)とその性能に影響を与える要因についてご紹介します。
真空炉の高温は何度くらいですか? 3,000℃までの精密加熱を実現
1,200°Cから3,000°Cまでの真空炉の温度範囲を発見し、設計と部品が性能にどのように影響するかを学んでください。
グラファイト加熱とは何ですか?高温用途におけるその利点を発見してください
グラファイト加熱について、そのユニークな特性、用途、高温の工業プロセスや実験室での利点についてご紹介します。
黒鉛炉の仕組み微量金属分析のための精密加熱
黒鉛炉の作動方法、段階、構成部品、高感度・高精度の微量金属分析への応用についてご紹介します。
高温焼結とは?高耐久・高強度材料の実現
1200℃~1400℃の高温焼結で粒子を融合させ、歯科や3Dプリンティングなどの産業で使用される高強度・高密度の材料を作る方法をご覧ください。
最高温度の工業炉とは?3000℃を超える炉のパワーを知る
3000℃を超える工業炉について、その種類、先端技術、製造や研究における主な用途をご紹介します。
グラファイトは高温に耐えられるのか?グラファイトの優れた熱特性
グラファイトが高温用途でどのように優れ、2450°C まで耐え、極端な条件下でも構造の完全性を維持する方法を学びましょう。
高温で黒鉛はどうなる?そのユニークな高温特性を知る
熱安定性、放射率、炉システムでの用途など、グラファイトが高温でどのように機能するかを学びます。
真空炉の温度範囲はどのくらいですか?用途に合わせて熱処理を最適化
真空炉の温度範囲(800°C~2400°C)と、アニール、溶解、高度な熱処理におけるその利点をご覧ください。
高温炉の温度とは?お客様の用途に適した温度範囲を見つける
マッフル炉、箱型炉、予熱炉など、高温炉の温度範囲とその用途についてご紹介します。
高温炉は何に使用されますか?必須のアプリケーションと利点
材料科学、冶金、セラミック、エレクトロニクスなどの産業における高温炉の用途と利点をご覧ください。
誘導炉の最高温度は?精密溶解では最高2000℃まで
コイル設計、るつぼ材料、IGBT技術などの要素により、誘導炉が最高2000°Cの温度を達成する方法をご覧ください。
工業炉の最高温度は何度ですか?極度の高温機能を発見する
工業炉は最高 3000°Cに達します。黒鉛炉、マッフル炉、誘導炉、電気アーク炉など、お客様の用途に適した炉の温度範囲についてご紹介します。
高温炉とは何ですか?産業および研究用途における精密加熱に不可欠
様々な産業における焼結、アニーリング、材料試験に不可欠な高温炉の目的、種類、用途をご紹介します。
グラファイトロッドとは?主な特性と用途を解説
さまざまな産業における高温および導電性の用途に不可欠なグラファイトロッドの特性、用途、利点を発見してください。
真空浸炭の温度は?熱処理プロセスの最適化
真空浸炭の理想的な温度範囲 (800°C ~ 1100°C) と、真空炉がどのようにして正確な熱処理を保証するかをご覧ください。
高温で使用する炉はどれですか?極度の高温用途向けのトップオプションを調べる
マッフル炉、真空炉、炭化ケイ素炉など、工業・科学・研究用途に最適な高温炉をご紹介します。
焼結の最高温度は?ジルコニアの強度と耐久性の最適化
ジルコニアの焼結温度範囲 (1200°C ~ 1400°C) と、それが材料の強度、耐久性、性能をどのように向上させるかをご覧ください。
セラミックスの焼結温度は?歯科用途に最適な密度と強度を実現する
セラミックの最適な焼結温度範囲(1200℃~1400℃)と、ジルコニアクラウンやブリッジのような歯科修復物における重要な役割についてご覧ください。
高温炉の機能とは?精度と性能を引き出す
セラミック、冶金、研究などの業界において、高温炉がどのように焼結、アニーリング、材料処理などを可能にしているかをご覧ください。
グラファイトの耐熱性とは?その高温特性を知る
最高 3000°C まで耐えるグラファイトの優れた耐熱性と、高温プロセスにおけるその用途について学びます。
グラフェンの化学気相成長は何度で起こるのか?最適合成のための重要な洞察
360°C ~ 1000°C のグラフェン CVD の温度範囲と、それがグラフェンの品質、厚さ、特性にどのような影響を与えるかを確認します。
ろう付け炉の温度とは?用途における精度と耐久性の実現
ろう付け炉の温度、材料の抵抗率に対するろう付け炉の温度の影響、およびろう付け炉の温度が産業用途向けに強力で耐久性のある接合をどのように確保するかについて学びます。
グラファイトは発熱体として使えるのか?高温用途での利点と課題を探る
グラファイトが高温用途で信頼できる発熱体である理由、その利点、課題、リスクの軽減方法についてご紹介します。
アーク溶解炉の温度は?その高温能力を知る
アーク溶解炉の温度範囲(3,000℃~3,500℃)、電極の種類、高温材料加工における用途についてご紹介します。
高温で使用できる炉のタイプは?お客様のニーズに最適な選択肢を見つける
歯科技工所、研究、産業用途に最適なマッフル炉、チューブ炉、真空炉、ボックス炉などの高温炉を調べてください。
炉での焼成プロセスとは?制御された加熱で材料を変化させる
炉での脱炭酸が、熱分解、相転移、揮発性物質の除去を通じて、どのように材料を変化させ、工業用途に利用されるかを学ぶ。
アーク炉の最高温度は?3000℃を超える熱の威力
アーク炉がどのようにして3000℃を超える高温を実現し、工業用途の金属や合金の効率的な溶解と精錬を可能にしているのかをご覧ください。
高温炉用発熱体とは?酷暑に最適な素材の発見
プラチナ、二ケイ化タングステン、炭化ケイ素など、高温炉用発熱体のトップ素材とその用途をご紹介します。
高温を発生できる炉は?極熱用途のトップオプション
製錬、熱処理、材料試験に最適な高温炉をご覧ください。電気アーク炉、マッフル炉、管状炉、真空炉、箱型炉を比較してください。
最高温度の炉とは?高温炉の限界を知る
マッフル炉、歯科用炉、真空炉の最高温度と、高温プロセスにおけるそれらの用途について学ぶ。
歯科用加熱炉の温度とは?歯科補綴物の精度を高める
歯科用炉の温度範囲(通常1200℃~1400℃)と、精密な温度サイクルがいかに高品質の歯科補綴物を保証するかをご覧ください。
グラファイトの産業用途にはどのようなものがありますか?業界を超えたその多用途性を発見してください
高温炉からエネルギー貯蔵、エレクトロニクスに至るまで、グラファイトの幅広い産業用途を探求し、そのユニークな特性を浮き彫りにする。
グラファイト材料の用途は何ですか?業界を超えたその多用途性を発見してください
エネルギー貯蔵から航空宇宙まで、グラファイト素材の多様な用途と、現代の産業や技術の進歩におけるその役割を探る。
黒鉛は加熱するとどうなりますか?そのユニークな高温特性を発見してください
グラファイトの熱安定性、低密度、高放射率が、炉室のような高温用途にいかに理想的であるかをご覧ください。
炭化処理とは?有機物を貴重な炭に変える
炭化プロセスは、熱分解によって木材のような有機材料を炭に変換する方法を学びます。その手順、利点、応用例をご覧ください。
歯科用セラミックの焼成温度は?歯科修復物の最適化
歯科用セラミックの焼成温度(850℃~1,400℃)と、それが強度、審美性、生体適合性にどのような影響を与えるかについて学びます。
歯科用セラミックの焼成温度とは?最適な結果を得るための重要な洞察
850℃から1,400℃までの歯科用セラミックの焼成温度と、それらが強度、透明性、生体適合性に及ぼす影響をご覧ください。
押出成形黒鉛とは?その用途、特性、利点を知る
押出成形黒鉛について、その製造工程、特性、用途、高温産業用途での利点などをご紹介します。
押出成形黒鉛の用途幅広い産業分野での用途をご覧ください。
高温工業プロセスからレクリエーション製品、精密実験用途まで、押出成形グラファイトの多様な用途をご覧ください。
アルミニウムの真空ろう付けの温度は何度ですか?強力で漏れのない接合部を実現
アルミニウム真空ろう付けに最適な温度範囲(570℃~620℃)と、強靭で耐久性のある接合には精密な制御が不可欠である理由をご覧ください。
脱炭酸に使用される炉のタイプは?熱処理ニーズに適した炉を探す
マッフル炉、ロータリーキルン、焼結炉など、脱炭酸に最適な炉を、お客様の材料およびプロセス要件に合わせてお選びください。
Cvdグラフェンの成長温度は?最適な成長条件のための重要な洞察
CVDグラフェン成長の温度範囲、金属基板などの重要な要素、そして高品質な結果を得るためのヒントをご覧ください。
高温石英とは?極熱用途に不可欠
高温石英の熱安定性、炉での用途、航空宇宙や半導体製造などの業界にとっての利点を発見してください。
焼結炉の温度とは?歯科用、Ptfe、先端材料の主要範囲
歯科材料の 1200°C から真空焼結などの高度な用途の 2400°C まで、焼結炉の温度範囲をご覧ください。
歯科用ポーセレンの焼成温度とは?完璧な修復のための重要な洞察
歯科用ポーセレンの焼成温度範囲(850℃~1,050℃)と、それが強度、審美性、生体適合性にどのような影響を与えるかをご覧ください。
セラミックはどのくらいの温度で加熱できますか?セラミックスの極度の耐熱性を知る
セラミック材料が 1000℃ ~ 2700℃ の極端な温度にどのように耐えるかを、組成、構造、用途に基づいて学びます。
焼結温度の範囲は?優れた結果を得るためのジルコニア焼結の最適化
ジルコニアの理想的な焼結温度範囲(1,200℃~1,600℃)と、最適な結果を得るための加熱速度、保持時間、冷却速度などの主な要因をご覧ください。
炉内ろう付けとは?最適な熱で正確な金属接合を実現する
理想的な炉のろう付け温度、それに影響を与える要因、マッフル炉がどのようにして正確で高品質の接合を保証するかについて学びます。
炉ろう付けの温度は何度ですか?最適な金属接合のための重要な洞察
ろう付けの臨界温度範囲、炉の種類、および強靭な金属接合用の炉ろう付けに影響する要因を学ぶ。
箱型炉の目的とは?主な用途と利点の説明
箱型炉の目的、熱処理、焼結、合金溶解などにおける主な用途をご覧ください。正確な温度制御と均一な加熱を実現する方法についてご紹介します。
グラフェン成長の低温とは?低温合成の進歩を探る
1000℃以下の低温グラフェン成長により、フレキシブル・エレクトロニクスやセンサーがどのように可能になるかをご覧ください。PECVDや触媒アシスト成長などの方法をご覧ください。
熱分解の温度とは?効率を最大化するためにプロセスを最適化する
家庭用燃料木炭の理想的な熱分解温度範囲 (400 ~ 450°C) と、それが製品の流通と効率にどのような影響を与えるかを学びます。
スパークプラズマ焼結の加熱速度とは?急速な高密度化と微細組織の実現
SPS の加熱速度 (50 °C/分 ~ 500 °C/分) によって、高度な材料の急速な緻密化、微細な微細構造、効率的な焼結がどのように可能になるかをご覧ください。
工業炉はどのくらい高温になるのか?その高温能力を知る
工業炉は最高 1800°C 以上の温度に達することがあり、焼結、アニーリング、溶解などのプロセスに不可欠です。詳細については、こちらをご覧ください。
最高温度が得られる炉は?ハイテク用途に最適な炉を見つける
マッフル炉の最高温度は1700°Cで、実験室や産業界に最適です。
電気炉の最高温度は?安全で効率的な使用のための重要な洞察
電気マッフル炉の最高温度範囲(1100°C~1700°C)を発見し、安全で効率的な運転方法を学んでください。
最高温度の発熱体とは?極端な熱に対応するトップ素材の発見
タングステン、炭化ケイ素、二ケイ化モリブデンなどの最高温度の発熱体とその用途について学びます。
熱間鍛造の温度とは?最適な金属成形のための重要な洞察
熱間鍛造の温度範囲(950℃~1250℃)とその重要性、そして自動車や航空宇宙産業などの金属特性に与える影響についてご覧ください。
黒鉛はどうやって人工的に作られるのでしょうか? |主要な手順とアプリケーションの説明
人造黒鉛が炭化、黒鉛化、後処理を経てどのように作られるかを学ぶ。人造黒鉛の用途と黒鉛炉の役割について知る。
ろう付け炉の温度は?精密金属接合における重要な洞察
高品質な金属接合のために、ろう付け炉の温度範囲(500℃~1200℃)とそれに影響する要因について学ぶ。
炭化の目的は何ですか?カーボンリッチな材料の利点を最大限に引き出す
炭化の目的、その利点、エネルギー、ろ過、先端材料などの産業における用途を探る。
工業用窯の温度はどれくらいですか?最適なパフォーマンスを実現する温度範囲を検討する
100℃から1800℃+までの工業用キルンの温度範囲を発見し、お客様の用途に適したキルンの選び方を学びます。
焼結の最低温度は?最適なジルコニア変態の達成
ジルコニアの最低焼結温度(1,100℃~1,200℃)を発見し、より高い温度で最適な密度と機械的特性を確保する方法を学んでください。
発熱体の最高温度は?ニーズに合った素材を探す
500 °C から 2000 °C 以上までの発熱体の温度限界を確認し、材料と設計がパフォーマンスにどのような影響を与えるかを学びます。
木材の熱分解の温度範囲はどれくらいですか?バイオ炭、バイオオイル、合成ガスの生産を最適化
木材の熱分解に最適な温度範囲(200℃~500℃)と、それがバイオ炭、バイオオイル、合成ガスの収率にどのような影響を与えるかをご覧ください。
歯科用セラミックの温度とは?最適な加工のための重要な洞察
歯科用セラミックの温度範囲(600℃~1500℃)と、精密な焼成がいかに強度、耐久性、審美性を保証するかについて学びましょう。
脱炭酸の目的とは?産業用熱処理の威力を解き放つ
冶金、セラミックス、化学などの産業で、材料の特性と効率を高めるために使用される熱プロセスである脱炭酸の目的を発見してください。
水素ろう付けの温度は?制御された熱で最適な結果を得る
水素ろう付けの理想的な温度範囲 (700°C ~ 1100°C) と、それがどのようにして強力で酸化のない接合を確保するかを学びます。
炭はどうやって炭化させるの?高品質の炭を作るためのステップ・バイ・ステップ・ガイド
材料の準備から抽出まで、炭を炭化するための重要な手順を学び、効率的かつ安全な生産を確保します。
炉焼結の温度は何度ですか?精密熱処理に関する重要な洞察
高品質の熱処理のための焼結温度範囲、材料固有の要件、および高度な制御技術をご覧ください。
磁器の製造に必要な熱量とは?完璧な焼成のための重要な洞察
最適な結果を得るための焼成段階、温度範囲、窯の種類など、磁器製造に必要な熱条件をご覧ください。
磁器の焼成温度は?正確な焼成で完璧な結果を出す
ポーセラーツに最適な焼成温度(1200℃~1400℃)と、ポーセラーツ用ファーネスがどのように高品質な仕上がりを実現するかについてご紹介します。
金属はどこまで熱くなるのか?一般的な金属の限界温度を知る
タングステン、アルミニウム、銅などの金属の融点や熱的特性、極限環境での用途について学びましょう。
温度は圧縮に影響するか?熱応力下の材料挙動を理解する
温度がポリマーや金属などの材料の圧縮特性にどのような影響を与え、その強度や変形挙動に影響を与えるかをご覧ください。
グラファイトの密度はどれくらいですか?産業用途に関する重要な洞察
グラファイトの密度、種類、影響因子、エネルギー貯蔵や冶金などの産業における用途を探る。
適切なろう付け温度とは?精密加熱による接合強度の最適化
アルミニウム、銅、ステンレス鋼などの素材に適したろう付け温度を見極め、丈夫で耐久性のある接合部を実現する方法をご紹介します。
ろう付けのために鋳鉄を予熱する温度は何度ですか?亀裂のない強力な結合を実現
理想的な予熱温度範囲 (250°F ~ 1200°F) と、亀裂のない強力で耐久性のある接合を確保するための鋳鉄のろう付け方法を学びます。
窯の温度とは?窯の温度範囲完全ガイド
セラミックから冶金まで、さまざまな業界の窯の温度範囲を確認し、ニーズに合った適切な窯を選択する方法を学びましょう。
電気炉とは?持続可能な技術で金属溶解に革命を起こす
電気アーク炉 (EAF) が電気を使用して金属を効率的に溶解し、排出量を削減し、持続可能な産業プロセスのためにスクラップをリサイクルする方法をご覧ください。
3種類のグラファイトとは何ですか?それらのユニークな特性と用途を発見してください
天然黒鉛、合成黒鉛、熱分解黒鉛、それぞれの特性、黒鉛炉などの高温用途における役割について学ぶ。
アルミニウムのろう付けに必要な温度は?高精度で強力な接合を実現
アルミニウムの理想的なろう付け温度(570°F~620°F)と、最適な結果を得るためのろう材、接合部の設計、加熱方法などの重要な要素についてご紹介します。
歯科における焼結プロセスとは何ですか?ジルコニアを耐久性のある歯科修復物に変える
歯科治療における焼結プロセスが、ジルコニア粉末をクラウンやブリッジのような強固で生体適合性のある歯科修復物にどのように変化させるかをご覧ください。
Cvdによるグラフェンの作製方法とは?スケーラブルで高品質なグラフェン製造の可能性
化学気相成長法(CVD)により、工業用途向けにスケーラブルで高品質なグラフェンの生産が可能になることをご紹介します。そのプロセス、利点、応用例をご覧ください。
温度は焼結にどう影響するか?粒子の結合と緻密化の最適化
拡散メカニズム、材料特性、最適な結果を得るための高度な制御方法など、温度が焼結に与える影響について学びます。
熱分解が始まるには木材は何度まで加熱する必要がありますか?効率的なバイオマス変換のための重要な洞察
木材熱分解の温度範囲(200~300℃)、そのメカニズム、バイオ炭製造やエネルギー生成などへの応用について学ぶ。
バイオ炭は熱分解で製造できるか?バイオ炭製造の持続可能なプロセスを発見する
熱分解によってバイオマスがバイオ炭に変換され、安定した炭素リッチな材料として土壌改良、炭素隔離などに利用される仕組みを学ぶ。
鉄は蒸発するのか?鉄の稀有な変身を科学的に解明する
極端な温度や低圧環境など、鉄が蒸発するために必要な条件をご覧ください。科学と産業における鉄の応用について学ぶ。
焼結温度は?ジルコニア焼結で最適な結果を得る
ジルコニアの理想的な焼結温度範囲(1,400℃~1,600℃)と、正確な温度制御が高品質な材料特性をどのように保証するかをご覧ください。
バイオガスの熱分解とは何ですか?再生可能エネルギーを廃棄物から解放する
バイオガスの熱分解によって有機廃棄物が再生可能エネルギーに変換され、埋め立て地の使用が削減され、持続可能性がサポートされる仕組みを学びましょう。
高速熱分解法とは?効率的なバイオマス変換を解き明かす
バイオマスを高効率かつ短時間でバイオオイル、合成ガス、バイオ炭に変換する高速熱分解の方法をご覧ください。
熱分解によりバイオガスが生成されますか?主な違いと用途を理解する
なぜ熱分解ではバイオガスが発生しないのか、また合成ガス、バイオオイル、バイオ炭などの主な副産物を発見してください。