よくある質問

Related to: 実験室用1800℃マッフル炉

成膜には異なる種類がありますか?PvdとCvd法に関するガイド

2つの主要な成膜タイプであるPVDとCVD、それらのサブテクニック、およびアプリケーションのニーズに最適な方法を選択する方法を探ります。

ウェーハ成膜のプロセスとは?CvdとPvd手法のガイド

CVDとPVDなどのウェーハ成膜プロセスについて学びましょう。これらは、シリコンウェーハ上に正確で薄い材料層を構築し、集積回路を作るための鍵となります。

アルミナチューブの最高使用温度は?高純度でその真価を引き出す

アルミナチューブの最高使用温度(最大1800℃)を決定する主要因、特に純度に焦点を当て、高温用途におけるその可能性を発見してください。

バッチ式炉とは?柔軟で制御された熱処理のためのガイド

バッチ炉が、焼鈍しや焼き入れなどの熱処理プロセスで、いかに精密な温度制御、不活性雰囲気、および柔軟性を提供するかを学びましょう。

バイオ炭は熱分解からどのように得られるか?バイオマス転換の主要生成物

熱分解によるバイオ炭の製造方法、土壌改良および炭素隔離におけるその役割、そして完全なバイオマス転換システムにおけるその位置づけについて学びましょう。

不活性雰囲気には何が使用されますか?窒素、アルゴンなどでプロセス制御をマスターする

窒素やアルゴンなどの一般的な不活性ガス、その特性、および酸化を防ぎ安全を確保するために用途に合った適切なガスを選択する方法について解説します。

バイオ炭を製造するための熱分解のプロセスとは?最適な結果を得るための温度と原料の制御

原料の準備から急冷に至るまでのバイオ炭製造の段階的なプロセス、および温度と材料の選択が品質にどのように影響するかを学びましょう。

マイクロ波焼結の温度はどのくらいですか?より速く、より低温での緻密化を実現

マイクロ波焼結は、従来の方式よりも100~300℃低い温度で完全な緻密化を達成し、大幅な時間とエネルギーの節約になります。

熱分解はグリーンなプロセスか?持続可能な廃棄物発電ソリューションの解明

熱分解がいかに廃棄物を再生可能エネルギーとバイオ炭に変換し、カーボンニュートラルなソリューションをもたらすかを探ります。主な利点と導入要因について学びましょう。

高速熱分解の温度は何度ですか?正確な熱制御でバイオオイルの収率を最適化

高速熱分解は、液体バイオオイルの生産を最大化するために400~650℃で行われます。温度と加熱速度がバイオマス転換の産物をどのように決定するかを学びましょう。

化学におけるキルン(焼成炉)とは何ですか?高温材料変換のガイド

工業化学におけるキルンの役割を発見してください。材料を溶融させることなく、分解、精製、相転移を目的とした熱処理です。

薄膜成膜の技術にはどのようなものがありますか?アプリケーションに最適な方法を選択する

スパッタリング、CVD、ALDなどのPVDおよび化学蒸着技術を探ります。研究室での膜質、速度、コストのトレードオフを理解しましょう。

粉末焼結プロセスとは?ネットシェイプ製造ガイド

粉末焼結が金属/セラミックス粉末を高精度かつ最小限の廃棄物で固体かつ複雑な部品に変える方法を学びましょう。

材料の化学堆積とは?薄膜作製方法のガイド

CVD、PECVD、めっきなどの化学堆積法を探求し、精密な薄膜作製について学びましょう。前駆体と相がどのように結果を決定するかを理解します。

蒸着はどのように機能するのか?PvdとCvdコーティングプロセスのガイド

PVDとCVDの蒸着法の主な違い(温度要件、コーティングの均一性、理想的な用途など)を学びましょう。

薄膜成膜のプロセスとは?Pvd、Cvd、およびコーティング技術のガイド

PVDやCVDのような薄膜成膜プロセスを探求しましょう。均一なコーティング、高純度、複雑な3D表面に適した方法の選び方を学びます。

誘導炉の動作原理とは?電磁溶解の深掘り

誘導炉が電磁誘導を利用して金属内部で直接熱を発生させ、効率的でクリーンかつ精密な溶解を実現する方法を発見してください。

バイオオイルに対する熱分解温度の影響とは?研究室の収率と品質を最適化する

熱分解温度がバイオオイルの収率、組成、品質をどのように制御するかを学びましょう。バイオマス変換の目標に最適な温度を見つけてください。

抵抗加熱炉とは何ですか?正確でクリーンな高温処理を実現

抵抗加熱炉が、焼結や焼鈍などのラボおよび産業プロセスにどのように正確な温度制御のために電気を使用するかを学びましょう。

誘導炉で金を溶かすことはできますか?クリーンで効率的な金溶解のためのガイド

誘導炉がいかにして金やその他の貴金属の迅速かつクリーンで正確な溶解を提供し、高純度と汚染の最小化を保証するかを発見してください。

アルミニウムの溶解にはどのような種類の炉が使用されますか?クリーンで効率的な溶解のための誘導炉

誘導炉がアルミニウム溶解の業界標準である理由を発見してください。高純度、エネルギー効率、正確な温度制御を提供します。

歯科におけるポーセレンの焼成とは何ですか?強度があり、生体に近いクラウンとベニアのためのラボプロセス

歯科ラボの炉内でのポーセレン焼成が、焼結とグレーズによって粉末を耐久性があり審美的なクラウンやベニアへとどのように変えるかを学びましょう。

バイオ炭を作るのに使われる機械は何ですか? 熱分解炉の解説

熱分解炉がどのようにして、低酸素環境でバイオマスを加熱し、温度と時間を制御して目的に合ったバイオ炭を生成するのかをご紹介します。

炉における焼結プロセスとは?固体粉末の緻密化ガイド

炉での焼結が、どのように粉末粒子を融点以下で結合させ、丈夫で緻密な部品を生成するかを学びましょう。段階、バリエーション、および応用を探ります。

焼結の利点は何ですか?優れた材料特性と費用対効果の高い生産の実現

焼結の主な利点、すなわち強度向上、複雑な形状の実現、高い再現性、費用対効果の高い大量生産についてご紹介します。

熱分解炉に蒸気を加えるのはなぜですか?製品の品質を高め、反応経路を制御するため

熱分解炉への蒸気注入が、燃焼を防ぎ、タールを減らし、合成ガスの収率を高めて、よりクリーンで価値の高い製品を得る方法をご覧ください。

窒化炉とは何ですか?歪みを最小限に抑えながら優れた表面硬化を実現

窒化炉がプラズマ拡散を利用して、溶融や反りなしに完成した鋼部品の表面に硬く耐摩耗性の層を形成する方法をご覧ください。

プラズマアーク溶解とは?高性能金属の比類ない純度を実現

プラズマアーク溶解(PAM)は、高温プラズマジェットを使用して、航空宇宙や医療用途に不可欠なチタンなどの反応性金属を精製・溶解します。

従来の焼結とマイクロ波焼結の違いは何ですか?より速く、より効率的な材料加工を実現する

従来の焼結とマイクロ波焼結を比較:加熱メカニズム、速度、エネルギー効率、およびラボのニーズに合わせた材料適合性。

熱脱脂とは?この重要な製造工程をマスターするためのガイド

粉末冶金およびセラミックスの成形品からバインダーを除去するために使用される、制御された加熱プロセスである熱脱脂について学びましょう。

Cnt製造に化学気相堆積法(Cvd)を使用する利点は何ですか?費用対効果の高い制御でスケールアップ

CVDがCNT製造の商業標準である理由をご覧ください。優れた拡張性、費用対効果、および産業用途向けの精密な構造制御を提供します。

ガス化の理論とは?バイオマスと廃棄物の合成ガスへの転換をマスターする

ガス化がいかにして部分酸化によってバイオマス、石炭、または廃棄物を合成ガスに変換するかを学びましょう。4つの段階、主要な反応、および実用的な応用を探ります。

焼結炉は何に使われますか?粉末を高強度部品に変える

焼結炉がどのように粉末材料を溶融させることなく、セラミックス、金属、電子機器用の固体部品に融合させるかをご覧ください。

炉内の還元雰囲気とは何ですか?酸化を防ぎ、金属表面を清浄に保つ

還元雰囲気炉がアニーリング、ろう付け、その他の熱処理において、いかに酸化を防ぎ、金属表面を積極的に清浄に保つかを学びましょう。

中周波数誘導溶解炉とは何ですか?高速、クリーン、精密な金属溶解を実現

中周波数誘導溶解炉が、電磁誘導を利用して、優れた冶金学的制御のもと、いかに迅速かつ効率的でクリーンな金属溶解を実現するかをご覧ください。

誘導炉の欠点は何ですか?金属溶解における主な制約

誘導炉の主な欠点、特に精錬能力の限界、バッチ操作、スクラップ品質への高い依存性について学びましょう。

浮遊触媒化学気相成長法(Fc-Cvd)とは?連続ナノ材料生産ガイド

浮遊触媒CVDが、従来のコーティング法とは異なる、カーボンナノチューブやその他のナノ材料のスケーラブルで連続的な合成をどのように可能にするかをご覧ください。

化学気相成長(Cvd)法によるダイヤモンド合成とは何ですか?ラボでの成長における分子レベルの精度を解き明かす

化学気相成長(CVD)が、低圧でガス活性化と原子ごとの堆積を利用して高純度のダイヤモンドを合成する方法を学びましょう。

歯科用セラミック炉はどのように材料を処理しますか?完璧な修復のために熱と圧力をマスターする

歯科用セラミック炉が熱処理とプレス技術を使用して、未加工のセラミックを耐久性のある臨床修復材に変える方法を学びましょう。

新たに提案されたダイヤモンド形成メカニズムは、従来の理解にどのように挑戦していますか? | Cvdイノベーション

CVDにおけるグラファイトの役割が、汚染物質から不可欠な前駆物質へとどのように変化し、ダイヤモンド合成の理論に革命をもたらしたかを発見してください。

ダイヤモンドを成長させる化学気相成長(Cvd)法とは何ですか?プレシジョン・カーボン・シンセシスを発見する

プラズマイオン化から原子ごとの堆積まで、CVDダイヤモンド成長プロセスがどのように機能するか、そしてなぜそれが純粋な結晶の最良の選択肢であるかを学びましょう。

保護ガス雰囲気の一般的な製造方法は何ですか? Expert Heat Treating Solutions

酸化や脱炭を防ぐための保護雰囲気の製造方法として、エンドサミックジェネレーターと窒素メタノール注入について学びましょう。

Lagp-Ncnt複合空気極の作製において、雰囲気焼結炉はどのように貢献しますか?

雰囲気焼結炉が700℃でLAGP-NCNTの結合を可能にし、酸化を防ぎ、電極の導電性を確保する方法をご覧ください。

炉の冷却速度制御は、徐冷された固体電解質にどのように影響しますか?結晶の完全性を達成する

プログラム可能な炉における正確な冷却速度制御が、結晶粒径を最適化し、固体電解質中の欠陥を低減する方法を学びましょう。

腐食研究において、制御雰囲気炉はなぜ不可欠なのでしょうか?現実的な産業リスクの再現

溶融塩腐食や硫化現象をオーステナイト系耐熱鋼でシミュレートするために、制御雰囲気炉がなぜ重要なのかをご覧ください。

高純度アルゴン保護雰囲気はなぜ必要ですか? 12%クロム耐熱鋼の完全性を確保する

12% Cr鋼の熱処理において、表面酸化、脱炭を防ぎ、材料の精度を確保するために高純度アルゴンが不可欠である理由を学びましょう。

ソリューション処理炉の機能は何ですか? Cualmn形状記憶合金の活性化

ソリューション処理炉が精密な800℃の加熱とマルテンサイト変態を通じてCuAlMn合金の超弾性をどのように活性化するかを学びましょう。

Fe-Cr-Mn-Mo-N-C鋼の製造における工業用電気加熱炉の役割は何ですか?Shs安定性の向上

工業用オーブンが、酸化物の精密な予備乾燥によりSHS反応と粉砕の安定性を最適化し、Fe-Cr-Mn-Mo-N-C鋼の製造をどのように最適化するかを学びましょう。

実験室用真空アーク溶解炉の主な機能は何ですか?合金研究を迅速に進めましょう

実験室用真空アーク溶解炉が材料科学研究における迅速な合金合成と微細構造スクリーニングをどのように可能にするかをご覧ください。

振動圧焼結炉は、C-Bnアルミナ複合材料をどのように改善しますか?優れたセラミック密度を実現

振動圧焼結が凝集物を除去し、c-BN強化アルミナ複合材料の密度と破壊靭性を向上させる方法をご覧ください。

Aacvdシステムにおける精密石英管の役割は何ですか?化学気相成長における純度と均一性を確保する

AACVDシステムにおいて、精密石英管が密閉された導管として機能し、圧力を一定に保ち、一貫したエアロゾル軌道を確保する方法を学びましょう。

制御雰囲気管状炉の機能とは?金属膜の脱湿と合金化の最適化

制御雰囲気管状炉が、熱エネルギーと保護化学環境のバランスを取りながら、金属膜の脱湿と合金化をどのように促進するかを学びましょう。

Cvdと比較したPecvdのコアバリューとは?薄膜コーティングにおける低温の利点を発見する

PECVDが低温(室温~350℃)で高品質な薄膜堆積を可能にし、熱に弱い実験材料を保護する方法を学びましょう。

ナノダイヤモンド薄膜前駆体におけるCvd装置の役割は何ですか?精密合成を実現する

CVD装置が、厚さと微細構造の精密制御を通じて、ナノダイヤモンド膜用の高純度炭素前駆体をどのように合成するかを学びましょう。

銀含有合金とオールセラミック修復物の両方に使用する炉をパージすることが重要なのはなぜですか?壊滅的な緑変を防ぐ

銀酸化物による汚染と、オールセラミック歯科修復物の修復不可能な緑変を防ぐために、炉のパージが不可欠である理由を学びましょう。

ロータリーキルンの機能とは?工業用熱処理ガイド

ロータリーキルンがどのように熱と回転を利用して、セメント、鉱業、先端材料製造における焼成、焼結、材料合成を行うかをご覧ください。

Pecvd窒化ケイ素の温度は?敏感なデバイスのための低温成膜ガイド

PECVD窒化ケイ素が450°C未満で成膜される理由を学びましょう。これは、高温が損傷を引き起こす半導体製造において不可欠です。

焼結とは何か、例を挙げて説明してください。粉末を固体の部品に融合させるガイド

焼結がどのように熱と圧力を利用して、粉末を溶かすことなく強力な固体部品に融合させるかを学びましょう。セラミックスから冶金学までの例をご覧ください。

焼鈍(アニーリング)段階では何が起こるのか?金属変態の3段階ガイド

焼鈍の3段階(回復、再結晶、粒成長)について学び、金属の応力を緩和し、延性を回復させる方法を理解しましょう。

誘導溶解で溶かすことができる金属は? 鉄から金まで、その多用途性を発見する

誘導溶解は、鉄、非鉄、貴金属、反応性合金を含む、すべての導電性金属で機能します。どの金属が適しているかを学びましょう。

電気アーク炉の溶解プロセスとは?効率的で高品質な鋼材生産を実現する

スクラップの装入から溶鋼の精錬まで、EAF溶解プロセスの主要な段階を発見し、効率的で高品質な生産を実現しましょう。

るつぼ炉の利点は何ですか?精度と制御による多用途な溶解を実現

るつぼ炉の主な利点(材料の多様性、正確な温度制御、コスト効率、ラボやワークショップに適したコンパクトな設計)を発見してください。

焼きなましの欠点とは?材料強度とコストにおける重要なトレードオフ

焼きなましの主な欠点(強度の低下、高いエネルギー消費、表面欠陥など)を探り、情報に基づいた熱処理の決定を下しましょう。

歯科医は今でもポーセリン(陶材)を使用しているのでしょうか?現代の歯科治療を変革するハイテクセラミックスについてご紹介します

ジルコニアや二ケイ酸リチウムのような現代の歯科用セラミックスが、より強度が高く審美性の高い修復物へと、従来のポーセリンからどのように進化してきたかを探ります。

レトルト炉の仕組みとは?高度な熱処理のための精密な雰囲気制御を解き明かす

レトルト炉が、どのように密閉容器内での間接加熱を利用して精密な雰囲気制御を実現しているかを学びましょう。これは窒化や焼結などのプロセスに不可欠です。

ろう付け時にどのような予防措置を講じるべきですか?安全なヒューム、火災、化学物質の取り扱いガイド

有毒ヒューム、火災リスク、化学物質の危険性を管理するための重要なろう付け安全予防策。換気、PPE、SDSの要件について学びましょう。

Cntの化学気相成長(Cvd)法とは何ですか?制御可能でスケーラブルなナノチューブ合成へのガイド

化学気相成長(CVD)が、ガスから原子レベルでカーボンナノチューブを構築し、スケーラブルな生産と特性の精密な制御を可能にする方法を学びましょう。

Cvd法を用いたCntの合成とは何ですか?高品質なカーボンナノチューブを効率的に成長させる方法

化学気相成長法(CVD)がいかにして構造制御、高純度、産業用途へのスケーラビリティを備えたカーボンナノチューブを合成するかを学びましょう。

熱分解にはどのような装置が使われますか?原料と製品に合った適切な反応器の選び方

流動床反応器やロータリーキルンなどの熱分解システムの主要コンポーネントと、目標に合った装置の選び方について学びましょう。

焼結において、管理雰囲気炉が望ましいとされる理由にはどのようなものがありますか?優れた焼結結果を達成する

管理雰囲気炉が酸化を防ぎ、緻密化を促進し、高性能焼結材料の微細構造を改善する理由をご覧ください。

焼結炉の用途は何ですか?粉末を高性能部品に変換する

焼結炉が、精密な熱と雰囲気制御により、金属部品、先進セラミックス、電子部品をどのように製造し、優れた材料特性を実現するかをご覧ください。

焼結サイクルの3つのステップとは?より強力な部品のためのプロセスを習得する

粉末混合、成形、炉加熱という3つの主要な焼結ステップを学びましょう。部品の密度、強度、複雑な形状を正確に制御します。

セラミックの歯は高価ですか?自然な見た目と耐久性のある歯科修復物への投資

セラミックの歯科用クラウンやベニアが他の素材よりも高価である理由を探ります。素材の品質、歯科技工所の芸術性、そして笑顔にもたらす長期的なメリットについて学びましょう。

最も自然に見える歯のクラウンは何ですか?継ぎ目のない、生き生きとした笑顔を実現

E-maxやジルコニアなど、自然な見た目のための最良の歯科用クラウン材料を発見し、透明度と光の透過性がどのようにリアルな外観を作り出すかを学びましょう。

歯科用クラウンにはどのような材料が使用されていますか?審美性、耐久性、費用のガイド

歯科修復のニーズに合わせて、セラミック、メタルボンド(メタルボンドポーセレン)、オールメタル合金などの歯科用クラウン材料の長所と短所を探ります。

アニーリング炉の役割は何ですか?応力除去と材料加工性の向上

アニーリング炉が金属を加熱・冷却して応力を除去し、延性を高め、結晶粒構造を微細化し、製造成果を向上させる方法を学びましょう。

バイオマスの熱分解のステップは何ですか?廃棄物をバイオ炭、バイオオイル、バイオガスに変える

バイオマスの熱分解の主要なステップ(準備、熱分解、生成物分離)を学び、価値あるバイオ炭、バイオオイル、バイオガスを生成します。

焼結になぜ窒素が使われるのか?コスト、酸化制御、材料特性のバランス

窒素が、酸化を防ぎながら費用対効果の高い焼結雰囲気としてどのように機能するのか、しかし最適な部品性能のためには窒化物形成の慎重な管理が必要であることを学びましょう。

熱分解は温室効果ガスに寄与しますか?ネットゼロ排出に向けた主要戦略

熱分解がいかに廃棄物を安定した炭素とクリーンな燃料に変換し、メタン排出を防ぎ、炭素を隔離することで温室効果ガスを削減するかを学びましょう。

熱処理のバッチプロセスとは?柔軟で制御された熱処理ガイド

熱処理のバッチプロセスを学ぶ:部品の完全なロットを加熱、保持、冷却することで、冶金における比類ない柔軟性を実現します。

バイオマス変換の化学プロセスとは?熱化学反応でバイオマスからエネルギーを引き出す

バイオマス変換の主要な化学プロセスであるガス化、熱分解、燃焼を探求します。合成ガス、バイオオイル、または熱のために反応を制御する方法を学びましょう。

熱分解と分解の違いは何ですか?制御された熱処理の力を解き放つ

熱分解と分解の主な違いを発見してください。熱分解は酸素なしで行われる熱分解であり、廃棄物をバイオ炭やバイオオイルのような貴重な製品に変えます。

焼結は何に使われますか?粉末から高強度部品を解き放つ

焼結が粉末状の材料を、冶金学から3Dプリンティングに至るまでの産業で使用される固体で高強度の部品へとどのように変換するかを学びましょう。

粉末焼結法とは?金属・セラミック部品製造ガイド

従来のプレス焼結からSLSのような先進的な積層造形技術まで、粉末焼結法を探求します。用途に合った適切なプロセスを選択する方法を学びましょう。

焼結の生成物は何ですか?粉末から耐久性のある複雑な部品を実現する

焼結がどのように金属またはセラミック粉末を、さまざまな産業用途向けの制御された特性を持つ丈夫で緻密な固体部品に変えるかを発見してください。

電気アーク炉は何を溶かすために使用されますか?スクラップ金属などを効率的に処理

電気アーク炉(EAF)が、電気アークからの強烈な熱を利用して、鋼スクラップ、アルミニウム、銅、その他の金属を溶かし、効率的なリサイクルを行う方法を学びましょう。

焼鈍における不活性雰囲気とは?熱処理中に金属を保護するためのガイド

不活性雰囲気が焼鈍中の酸化と脱炭をどのように防ぐかを学びましょう。材料とプロセスに最適なガスを見つけてください。

焼鈍(アニーリング)は材料特性にどのように影響しますか?強度、延性、導電率を調整する

焼鈍熱処理が、微細構造を変化させることによって、延性、硬度、電気伝導率などの材料特性をどのように変化させるかを学びましょう。

焼鈍炉はどのように機能するのか?精密熱処理ガイド

精密な温度制御を通じて、焼鈍炉がどのように3つの段階で機能し、応力を除去し、材料の延性を向上させるかを学びましょう。

炉内の雰囲気はなぜ重要なのか?材料の品質と性能にとっての重要な要素

炉内の雰囲気が化学反応を制御し、材料を保護し、最適な工業熱処理のために均一な加熱を保証する方法を学びましょう。

誘導加熱で金属を溶かすことはできますか?高速でクリーンな溶解のための現代的な方法

誘導溶解が電磁場を利用して金属を内部から加熱し、鉄鋼、アルミニウム、貴金属において効率的で高純度な結果を生み出す方法を学びましょう。

アーク炉は何に主に使われますか?スクラップを効率的にリサイクルして高品質な鋼鉄を製造

アーク炉は主に、リサイクルされた鉄スクラップを溶融して新しい炭素鋼や合金鋼を製造するために使用され、持続可能で柔軟な製鋼を可能にします。

Eafの欠点は何ですか?コスト、品質、原材料における主要な課題

電気アーク炉(EAF)の主な欠点を探ります。これには、高い電力コスト、スクラップへの依存、および高純度鋼種の製造における制限が含まれます。

焼結はなぜ重要なのでしょうか?粉末を高機能部品に変える

焼結が材料強度、導電性をどのように向上させ、金属やセラミックスから複雑な部品を費用対効果の高い方法で大量生産を可能にするかを発見してください。

熱分解では何が起こるか?炭化水素を分解することの深い探求

熱分解がいかにして高温を利用して大きな炭化水素分子をガソリンやアルケンなどの価値ある小さな分子に分解するかを学びましょう。

焼結の特性は何ですか?制御された多孔性と高性能材料をマスターする

焼結の主な特性を探る:制御された多孔性、高い寸法精度、金属やセラミックスの強度向上。複雑な部品や高融点材料に最適。

ロータリーキルンはどのように動作しますか?連続高温処理をマスターする

ロータリーキルンがどのように回転、傾斜、熱流を利用して、工業用途における効率的な焼成、乾燥、材料処理を行うかを学びましょう。

Lpcvd SinとPecvd Sinの違いは何ですか?デバイスに最適な成膜方法を選択する

LPCVD 対 PECVD 窒化ケイ素:半導体およびMEMS製造における膜質、温度、応力、および均一性(コンフォーマリティ)に関するガイド。

Lpcvdにおけるポリシリコンの温度は何度ですか?膜構造と性能の鍵をマスターする

LPCVDポリシリコン堆積の重要な580°C~650°Cの温度範囲と、それが結晶構造、電気特性、膜の均一性をどのように制御するかを発見してください。

熱分解はどのように始まるのか?効率的なバイオマス変換のための分子トリガーを解き明かす

熱分解がどのように熱と不活性雰囲気で始まり、化学結合を破壊し、バイオマスを価値ある製品に変える連鎖反応を開始するかを発見してください。