あなたの研究室に高品質の機器と材料を提供する、信頼できる世界規模のサプライヤー!
について
ブログ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
製品
サンプルの準備
静水圧プレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
ガラス素材
バイオ化学装置
ロータリーエバポレーター
ガラスリアクター
高圧反応器
短経路蒸留
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
知識
会社
私たちについて
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
サービスサポート
お問い合わせ
メニュー
メニューを閉じる
サンプルの準備
静水圧プレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
ガラス素材
バイオ化学装置
ロータリーエバポレーター
ガラスリアクター
高圧反応器
短経路蒸留
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
知識
ブログ
について
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
よくある質問 -
乾式三次元振動ふるい
振動ふるい振とう機とは?粒度分析・分離に欠かせない
振動ふるい振とう機は、粒度別に粒子を分離し、ウェット/ドライサンプルを処理し、業界全体で正確な品質管理を保証する方法をご覧ください。
振動ふるいとは?材料分離の効率と精度を高める
振動ふるいは、食品、医薬品、鉱業などの産業でどのように材料を分離、分類、ろ過しているかをご覧ください。その利点と用途をご覧ください。
ふるい振とう機とは精密ふるい振とう機
ふるい振とう機の目的、種類、アプリケーションをご覧ください。
ふるい振とう機の主要コンポーネントとは?粒度分析の最適化
パワーユニット、スクリーン、衝撃吸収スプリングなど、効率的な粒度分析に欠かせないふるい分け機の構成部品をご紹介します。
試験室におけるふるい分けの重要性とは?材料の品質と一貫性の確保
試験室でのふるい分けがどのように粒度分析、品質管理、材料分離を確実にし、業界全体で一貫した結果をもたらすかをご覧ください。
ふるい振とう機とは?粒子径分析の精度を高める
ふるい振とう機は、製薬、建設、食品などの産業において、正確性、効率性、汎用性を保証し、粒度分析を自動化します。
ふるいとは?粒度分析に欠かせないツール
実験室用ふるいがどのように粒子をサイズ別に分類するのか、その用途と食品、製薬、鉱業などの産業における利点についてご覧ください。
実験用ふるいとは?粒度分析と品質管理に欠かせないツール
建築、食品検査、土壌分析など、精密な粒度分布測定に使用されるふるいの用途、種類、アプリケーションをご覧ください。
ふるいとは?正確な粒度分布測定に不可欠なツール
実験用ふるいについて、その種類、用途、品質管理や研究のための正確な粒度分析を保証する方法についてご紹介します。
ふるい振とう機のデメリットとは?主な制限事項の説明
微粒子の問題、粒子形状の仮定、メンテナンスの課題など、ふるい振とう機の限界について学びます。
試験ふるいの種類とは?正確な粒度分布測定に適したふるいを探す
乾式、湿式、ワイヤーブレード、メタルパンチング、電鋳など、さまざまな産業分野で精密な粒度分布測定が可能な試験ふるいをご紹介します。
ふるい振とう機とはラボでの粒度分布測定を効率化
ふるい振とう機で粒度分析を自動化し、品質管理や研究の効率性、正確性、再現性を確保する方法をご覧ください。
ふるいとは?粒度分析と分離に不可欠なツール
建設、食品、鉱業などの業界における粒度分析、分離、サンプル前処理のための実験室用ふるいの用途をご覧ください。
試験ふるいのサイズと種類は?正確な粒度分布測定ガイド
研究室や産業界で精密な粒度分析を行うための試験ふるいのサイズ、種類、業界標準についてご紹介します。
試験ふるいの精度はどのように決定されますか?信頼性の高い粒度分布測定
統計的予測、国際規格、正確な結果を得るための主な影響因子を用いて、試験ふるいの精度がどのように決定されるかを学びます。
ふるい振とう機の運転時間は?粒子分離プロセスの最適化
正確な粒子分離のためのふるい振とう機の運転時間についてご紹介します。ふるい振とう機の運転時間には、材料、メッシュサイズ、規格などの要素が影響します。
ふるい試験とは?粒度分析完全ガイド
ふるい分け試験について、その用途、利点、食品、医薬品、鉱業などの産業における品質管理についてご紹介します。
試験ふるいのAstm規格とは?正確な粒度分布測定
正確な粒度分析のためのメッシュサイズ、認証、校正など、試験ふるいのASTM E11規格についてご覧ください。
粒径の測定にはどの手法が最適ですか?ニーズに合った適切な方法を見つける
ふるい分析、直接画像分析、SLS、DLSなど、最適な粒度分布測定技術をご覧いただき、お客様のアプリケーションに適したものをお選びください。
Kbrペレット法の原理とは?赤外分光法における固体試料分析の手引き
赤外分光法におけるKBrペレット法の仕組み、利点、固体試料分析への応用についてご紹介します。
遠心分離フィルターの利点は何ですか?研究室の効率と精度を向上
高速分離、サンプルロスの最小化、さまざまな用途への汎用性など、遠心分離フィルターの主な利点をご覧ください。
観察用のKbrペレットはどのように準備しますか?正確な Ftir 分析のためのステップバイステップ ガイド
FTIR分光分析用のKBrペレットの調製方法を学び、正確な分光分析のための透明で均一なペレットを確保します。
高速熱分解とは?バイオマスから高いバイオオイル収率を引き出す
バイオマスを高効率かつ最適な収率でバイオオイル、バイオ炭、ガスに変換する高速熱分解の方法をご覧ください。
Kbrペレットの圧力は?最適なIrスペクトロスコピー結果を得るために
高品質の IR 分光サンプル用の KBr ペレットとチップを調製するための推奨圧力範囲 (8 ~ 10 トン) について学びます。
Kbrペレットはどのように調製するのですか?正確な赤外分光法のためのステップバイステップガイド
混合、圧縮、よくある間違いの回避など、ステップバイステップのガイドを使用して、IR 分光分析用の KBr ペレットを準備する方法を学びます。
Ir分光分析用のKbrペレットはどのように準備しますか?正確な分析のためのステップバイステップガイド
正確なFTIR分析のための透明で高品質なサンプルを確保する、IR分光用のKBrペレットの調製方法をご紹介します。
なぜKbrペレットに使用する臭化カリウムは乾燥していなければならないのか?正確なIrスペクトロスコピーの結果を得るために
正確なデータ、鮮明なスペクトル、信頼性の高いサンプル分析を保証するために、乾燥 KBr が IR 分光法に不可欠である理由を学びましょう。
IrにおけるKbrの範囲はどれくらいですか?正確なスペクトル分析のための重要な洞察をマスターする
IR 分光法における KBr の範囲 (4000 cm-¹ ~ 400 cm-¹) とその利点、限界、および信頼性の高いスペクトル分析への応用について学びます。
Ftir分析用のKbrペレットはどのように調製するのですか?正確な結果を得るためのステップバイステップガイド
FTIR分析用のKBrペレットを、正確な混合、加圧、水分コントロールによって調製し、信頼性の高いスペクトル結果を得る方法をご紹介します。
重力によって周囲の液体から固体を分離する最も効率的な方法とは?セディメンテーションの利点
沈殿が液体から固体を分離する最も効率的な重力ベースの方法であり、低エネルギー使用と費用対効果を提供する理由をご覧ください。
フィルタープレスの効率とは?主な要因と最適化のヒント
研究室や産業における固液分離のために、フィルタープレスの効率がどのように測定され、最適化されているかをご覧ください。専門家のヒントでパフォーマンスを向上させましょう。
フィルターケーキが濾過効率を高める理由とは?性能向上とコスト削減を実現
フィルターケーキが二次媒体として機能し、一次フィルターの負荷を軽減し、一貫したパフォーマンスを確保することで、どのように濾過効率を向上させるかをご覧ください。
Kbrペレットの用途は何ですか?正確な赤外分光分析に不可欠なツール
KBr ペレットが IR 放射に対する透明性、準備の容易さ、費用対効果を提供することで、どのようにして正確な IR 分光分析を可能にするかをご覧ください。
ドライバッグプロセスとは?セラミック製造の効率化について
ドライバッグ等方圧加圧プロセス:その効率性、均一な密度、高品質セラミック製造への応用をご覧ください。
Kbrの機能とは?科学と産業におけるKbrの多彩な用途を知る
IR分光法、化学合成、医学、写真、産業用途におけるKBrの役割など、KBrの主要な機能について学びましょう。
Ftir分析におけるKbrと原薬の比率は?正確なスペクトル結果を得るために
鮮明で正確なFTIRスペクトルを得るには、KBrと原薬の比率を100:1にすることが重要です。信頼性の高い結果を得るための準備のヒントをご覧ください。
Kbrペレットはどのように洗浄しますか?適切な洗浄により正確な Ftir 結果を保証
正確なFTIR分析のためにKBrペレットをクリーニングするステップバイステップのプロセスをご覧ください。専門家のアドバイスを参考に、汚染を防ぎ、ペレットの寿命を延ばしましょう。
遠心分離機はどのように粒子を分離するのか?効率的な分離の科学を解き明かす
遠心分離機が遠心力を利用して粒子を密度、サイズ、中間粘度別に分離する方法を学びます。重要な要素と用途を発見します。
遠心分離とろ過のどちらが優れているか?ニーズに合った分離技術の選択
遠心分離と濾過の違い、その用途、そしてどちらの方法がお客様の特定の分離ニーズに適しているかをご覧ください。
ろ過に勝る遠心分離の利点とは?より速く、効率的で、多目的な分離
遠心分離がろ過よりも処理速度が速く、純度が高く、拡張性が高く、さまざまな用途でサンプル損失が最小限に抑えられる理由を発見してください。
ろ紙は固体と液体の分離に使えるか?主な利点と用途
濾紙が液体から固体を効果的に分離する方法、濾紙の種類、利点、研究室や産業での用途について学びます。
乾式灰化とは?材料中の無機残留物の測定ガイド
マッフル炉を使ってプラスチック、食品、石炭などの材料に含まれる無機残留物を測定する技術である乾式灰化について学ぶ。
乾式灰化法とは?シンプルで費用対効果の高い分析手法
乾式灰化法がどのように鉱物組成分析を簡素化し、有機物を除去し、大量の試料を効率的に処理するかをご覧ください。
ドライポンプの種類とは?最適なオイルフリー真空ポンプを探す
ダイアフラムポンプ、スクロールポンプ、ロータリーベーンポンプの主な種類と、クリーンでオイルフリーな環境での用途をご紹介します。
FtirにおけるKbrの使用とは?固体試料分析における主な利点
透明で不活性かつ信頼性の高い固体試料を調製するために、KBrがFTIR分光分析に不可欠である理由をご覧ください。
バイオマスペレットの仕様とは?品質と効率の主なパラメーター
水分と灰分、発熱量などのバイオマスペレットの仕様について学び、品質と効率を確保しましょう。
Kbrペレットの目的とは?正確な赤外分光測定に不可欠なツール
分子分析用の透明で均一なサンプルを提供することで、KBrペレットがいかに精密な赤外分光測定を可能にするかをご覧ください。
遠心分離とろ過の力の違いは?重要な洞察を解説
関係する力、用途、操作上の考慮事項に焦点を当てて、遠心分離と濾過の主な違いを調べます。
フィルタープレスに代わる脱水機とは?産業用脱水ソリューションのトップ
遠心分離機、ベルトフィルタープレス、バキュームフィルターなど、フィルタープレスに代わる選択肢をお探しください。お客様のニーズに最適な脱水ソリューションを見つけてください。
粒子径は熱分解にどう影響するか?熱伝達と製品収率の最適化
バイオマスや廃棄物転換のための熱分解プロセスにおいて、粒子径が熱伝達、反応速度、生成物分布にどのような影響を与えるかを学ぶ。
圧力がろ過に与える影響濾過プロセスを最適化して効率を最大化する
圧力がろ過効率、速度、フィルターの完全性にどのような影響を与えるかを学びます。ろ過システムを最適化して性能を向上させるヒントをご覧ください。
サンプルサイズに影響を与える要因とは?信頼できる結果を得るための調査デザインの最適化
研究の目的、母集団のばらつき、信頼水準、堅実な研究のための実践的な考慮事項など、サンプルサイズに影響を与える主な要因について学びます。
Kbrのデメリットとは?主な限界とリスクを解説
KBr の吸湿性、健康上のリスク、分光学的限界、環境への影響など、KBr の主な欠点を理解します。
Kbr法とAtr法の違いは?赤外分光法の重要な洞察
サンプルの前処理、スペクトルの質、アプリケーションの柔軟性など、赤外分光法におけるKBr法とATR法の違いを探ります。
Kbr Ftirの欠点とは?試料調製における主な課題
汚染リスク、環境への影響、複雑な準備プロセスなど、KBr FTIR の欠点を調べます。
FtirにおけるKbrとAtrの違いは何ですか?分析に適した方法を選択する
FTIR分光法におけるKBrペレット法とATR法の主な違いについて、サンプルの前処理、感度、さまざまなサンプルタイプへの適合性などをご紹介します。
ベルトフィルタープレスの利点とは?廃水処理の効率と持続可能性を高める
廃水処理における高効率、費用対効果、多用途性、環境コンプライアンスなど、ベルト フィルター プレスの主な利点を発見してください。
ろ過と遠心分離の違いとは?効果的な分離のための重要な洞察
原理、用途、効率、装置要件など、ろ過と遠心分離の主な違いを理解します。
プレート&フレームフィルタープレスの欠点とは?主な制限事項の説明
高いコスト、労働集約的な操作、必要なスペースなど、プレート&フレームフィルタープレスの欠点を発見し、より良い濾過の決定を。
ドライアッシングの利点とは?簡便性、費用対効果、安全性についての説明
簡便性、費用対効果、有害化学物質の使用削減など、乾式灰化の主な利点をご覧ください。乾式灰化がサンプル分析に適した方法である理由をご覧ください。
フィルタープレスのケーキの厚さとは?ラボの効率化のためのろ過の最適化
ラボ用フィルタープレスのケーキの厚さ(10~30mm)が、ろ過効率、含水率、ケーキ除去の容易さにどのように影響するかをご覧ください。
KbrとAtrの違いは何ですか?赤外分光法テクニックガイド
サンプル調製、測定原理、理想的な用途など、IR 分光法における KBr と ATR の主な違いを発見します。
ウェットバッグツーリングとドライバッグツーリングの違いは?メーカーにとっての重要な洞察
柔軟性、生産量、コストなど、静水圧プレスにおけるウェットバッグとドライバッグの金型の違いについてご紹介します。
KbrのIr乾燥温度は?正確なIrスペクトロスコピー結果を得るために
最適な乾燥温度(110℃~120℃)と、正確なIRスペクトロスコピー結果を得るためのKBr調製の主な手順についてご紹介します。
溶液のろ過に影響を与える要因とは?ろ過プロセスの最適化
粒子の特性、濾材の特性、操作条件など、濾過効率に影響を与える主要な要因を発見します。
フィルタープレスクロスの厚さとは?適切な布厚でろ過を最適化する
最適な濾過性能を実現するために、素材、織り方、用途のニーズに基づいた理想的なフィルタープレス用布の厚さ(0.5~5mm)をご覧ください。
フィルタープレス固形分の含有量とは?組成と用途に関する洞察
環境、廃棄物、材料回収プロセスにおけるフィルタープレス固形物の組成、要因、用途をご覧ください。
サンプル中の高い灰分含有量は何を示しているのか?品質と安全性に関する重要な洞察
試料中の高灰分の意味、食品安全性、産業効率、品質管理への影響を発見する。
灰分測定時の飛散を防ぐには?正確な結果を得るための重要なヒント
試料の前処理、制御された加熱、適切な取り扱い技術など、灰分測定時の飛散を防止するための主な方法を学びます。
乾式灰化 Vs 湿式灰化:試料分析に最適な方法は?
乾式灰化と湿式灰化の違い、利点、欠点、正確な試料分析に最適なアプリケーションをご覧ください。
ダイヤモンドテスターは本当に機能するのか?本物のダイヤモンドを見分ける方法
ダイヤモンドテスターの仕組み、その限界、ラボグロウンダイヤモンドがテストに合格する理由。ダイヤモンドバイヤーやジュエラーにとって不可欠な洞察です。
ハンマーミルで得られる製品サイズはどのくらいですか?正確な粒子サイズの低減を実現
調整可能なスクリーンサイズとハンマースピードで、1mm以下の製品サイズを実現するハンマーミルの方法をご覧ください。医薬品、食品加工などに最適です。
Kbrの危険性とは?正しい取り扱いで健康を守ろう
毒性、皮膚刺激性、呼吸器への危険性、ブロミズムなど、KBrの危険性について学ぶ。重要な安全対策について学ぶ。
Kbr法とは?赤外分光分析のための固体試料調製ガイド
正確な赤外分光分析のために固体試料を調製する重要な技術であるKBr法について学びます。KBr法の利点、応用、限界についてご覧ください。
サンプルサイズは何に依存するのか?信頼できる調査結果を得るための重要な要素
信頼できる研究結果を確実にするために、精度、ばらつき、効果量、信頼水準、統計的検出力など、サンプルサイズに影響を与える要因について学びます。
灰分の測定方法は?乾式灰化、湿式灰化、低温灰化の手引き
乾式灰化、湿式灰化、低温灰化など、灰分を測定する方法と、さまざまな産業での応用について学ぶ。
乾式灰化と湿式消化の主な違いは?正しい分析技術の選択
試料の状態、温度管理、ミネラル分析の精度など、乾式灰化と湿式消化の違いを理解する。
なぜ灰分測定は小麦粉の品質にとって重要なのか?主な洞察と利点
灰分測定により、小麦粉の品質、純度、安全性と栄養に関する業界基準への適合がどのように保証されるかをご覧ください。
なぜKbrペレットがFtirに使われるのか?主な利点と用途を説明
FTIR分析にKBrペレットが不可欠な理由をご覧ください。透明性、均一性、コスト効率に優れたKBrペレットは、正確なスペクトルデータを提供します。
プレート&フレームフィルタープレスの産業用途とは?産業別の主な用途を探る
プレートおよびフレーム フィルター プレスが化学、食品、鉱業、廃水処理などの業界で効率的な固液分離のためにどのように使用されているかをご覧ください。
灰分測定とは?品質管理とミネラル分析の鍵
食品、医薬品、環境科学などの業界において、灰分測定がどのように品質、安全性、コンプライアンスを保証しているかをご覧ください。
蛍光X線分析に必要な試料サイズは?適切な前処理による分析の最適化
粉砕、プレス、ホモジナイズ技術など、正確な蛍光X線分析に理想的なサンプルサイズと前処理方法をご紹介します。
遠心分離機の仕組みと目的は?科学と医学における役割を探る
遠心分離機が遠心力を利用して混合物を密度別に分離する方法を、医学、研究、産業での応用例とともに学びましょう。
プレート&フレームフィルタープレスの構成部品とは?最適なろ過のための主要部品の説明
プレート&フレームフィルタープレスの4つの主要コンポーネント、フレーム、フィルタープレート、マニホールド、フィルタークロスをご覧ください。これらがどのように効率的な固液分離を実現するのかをご覧ください。
フィルタープレスの素材とは?強化ポリプロピレンの利点を知る
高強度、耐食性、無毒性を備えた強化ポリプロピレンがフィルタープレス・プレートに理想的な素材である理由をご覧ください。
油圧システムで最も重要なメンテナンス作業は何ですか?適切な液体ケアによりシステムの信頼性を確保
なぜ作動油のメンテナンスがシステムの性能、効率、寿命にとって重要なのかを学びましょう。故障を防ぐための主なメンテナンスのヒントをご覧ください。
灰分試験に使用する温度は?正確な材料分析のための重要な洞察
ISO 1171規格(815℃)を含む灰試験温度、材料固有の要求事項、および安全上の考慮事項について学びます。
Ir用Kbrペレットを調製する前に、乳鉢と乳棒を何で洗浄すべきか?適切な洗浄で正確な結果を得る
KBrペレット調製用の乳鉢と乳棒を洗浄するための最適な溶剤と手順について学び、コンタミネーションのないIRスペクトロスコピーの結果を保証します。
ろ過の産業用途とは?産業界における重要な役割を知る
食品製造、製薬、石油化学などの産業において、ろ過がどのように品質、安全性、効率性を確保しているかをご覧ください。
なぜ食品の水分と灰分が重要なのか?品質、安全性、栄養の確保
水分と灰分が食品の品質、安全性、栄養価にどのような影響を与えるかを学ぶ。コンプライアンスと消費者の信頼に不可欠です。
灰分分析とは?食品の品質と安全性を評価する重要な方法
灰分分析がどのように食品中のミネラル含有量を測定し、品質、安全性、規制遵守を保証しているかをご覧ください。
熱分解油の含水率とは?特性と用途への影響を理解する
熱分解油の20~30%の水分含有量、粘度、安定性への影響、再生可能燃料としての用途について学ぶ。
薄膜の厚さとは?正確な測定と応用のための重要な洞察
薄膜の厚さ、その測定技術、様々な用途における光学的、電気的、機械的特性への影響について学ぶ。
赤外分光法におけるKbrの用途とは?正確な固体試料分析に不可欠
透明で均一、高品質な固体試料分析のために、KBrがどのように赤外分光分析に使用されているかをご覧ください。KBrの主な利点とアプリケーションをご覧ください。
なぜKbrはIr測定用のペレットを作るのに使われるのか?主な利点の説明
IRに対する透明性、ペレット形成の容易さ、非吸湿性、再現性のある結果など、KBrがIR分光分析ペレットに最適である理由をご確認ください。
ペレットミルのダイサイズは?効率と耐久性の最適化
ペレットミルのダイサイズ(全体の厚さ、入口の深さ、最適なパフォーマンスの寿命に影響する要因など)について学びます。
IrにおけるKbrの役割とは?正確な分光分析のための重要な洞察
透明性、安定性、非反応性を備えたKBrが、精密な化学分析のためにどのように赤外分光法を強化しているかをご覧ください。
誘導加熱に適した周波数を選ぶには?性能と効率の最適化
材料特性、加熱深さ、アプリケーションのニーズに基づいて、誘導加熱に理想的な周波数を選択する方法を学びます。
選択的レーザー焼結(Sls)の限界とは?主な課題を解説
材料の制約、表面仕上げの問題、後処理の課題など、SLSの限界を探り、その効率と費用対効果に影響を与える。
誘導炉の使用周波数とは?適切な周波数で溶解性能を最適化する
誘導炉の周波数(50 Hz~400 kHz)が溶解効率、材料特性、炉能力にどのような影響を与え、最適な性能を発揮するのかをご覧ください。