よくある質問

Related to: 実験室用 1700℃ マッフル炉

管状炉はどのように機能しますか?精密高温処理ガイド

管状炉が発熱体、作業管、およびコントローラーを使用して、材料合成と分析のための正確で均一な高温をどのように達成するかを学びましょう。

黒鉛炉は何をするものですか?極度の高温と超高感度分析を実現

黒鉛炉がいかにして超高感度の化学分析と、材料科学向けに最高3000℃までの極度の高温処理を実現するかをご覧ください。

暖房炉の電力消費に影響を与える要因は何ですか?効率を最大化し、コストを削減する

暖房炉の効率が電力消費を削減する鍵であることを学びましょう。メンテナンス、サイジング、建物の状態などの要因を発見してください。

最新のセラミックファーネスに推奨されるメンテナンス方法は?ピークパフォーマンスのためにファームウェアアップデートを優先する

精度、互換性、信頼性を確保するために、最新のファームウェアアップデートをインストールすることが、最新のセラミックファーネスにとって最も重要なメンテナンスステップである理由を学びましょう。

電気アーク炉の最高温度制限は何度ですか?金属溶解のための極限熱の解明

電気アーク炉(EAF)はアーク内で3000℃を超えることがあります。この極限の熱が、お客様の用途にとってマッフル炉や燃焼炉とどのように比較されるかを学びましょう。

焼戻しプロセスの4つの段階とは?鋼の硬度と靭性の鍵をマスターする

応力除去から球状化まで、鋼の焼戻しの4つの段階を学びましょう。用途に応じた硬度と靭性のバランスをとる方法を理解します。

焼結温度が密度に与える影響とは?最適な材料特性のためのバランスの習得

焼結温度が材料密度をどのように左右するか、また、結晶粒成長、硬度、基板適合性との重要なトレードオフについて学びましょう。

チャンバーファーネスとは何ですか?ラボでの正確な高温処理を実現

チャンバーファーネスとは何か、焼鈍、硬化、灰化などの主要な機能、および正確な熱処理のための標準的なラボ用オーブンとの違いを発見してください。

誘導炉はアルミニウムを溶解できますか?研究室での迅速かつクリーンな溶解を実現

誘導炉がアルミニウムやその他の金属を、正確な温度制御、速度、高純度で効率的に溶解する方法を学びましょう。

炉室の用途とは?制御された高温処理のガイド

焼結、アニーリング、硬化、および材料分析のための炉室の主要な機能を、研究室と産業の両方で発見してください。

チャンバー炉とは?精密熱処理ガイド

チャンバー炉がどのようにして精密な温度制御、雰囲気管理、および材料処理のためのクリーンな環境を提供するのかを学びましょう。

高温を生成できる炉は?プロセスに合った適切な高温炉を選びましょう

最大1600°Cの高温用途向けに、管状炉と箱型炉を比較します。バッチ式と連続式システム、および雰囲気制御について学びましょう。

高温焼結とは何ですか?要求の厳しい部品の強度と耐久性を向上させる

高温焼結が、より優れた金属部品の引張強度や疲労耐性などの機械的特性をどのように向上させるかをご覧ください。

誘導炉で銅を溶解できますか?はい、こちらがクリーン溶解のための効率的な方法です

誘導炉がいかに効率的に銅を溶解するか、真鍮や青銅などの合金に最適な正確な温度制御とともに学びましょう。あなたのニーズに合った炉を見つけてください。

プラズマ炉とは?極限の材料処理を実現する超高温の活用

有害廃棄物の処理、先端冶金、エネルギー回収(WTE)のために、イオン化ガスを使用して15,000℃を超える温度を達成するプラズマ炉の仕組みをご覧ください。

セラミックチューブの最高温度は?素材によって異なります – その理由を解説します。

セラミックチューブの最高温度は素材によって異なり、石英(1100℃)、アルミナ(1700℃)、ジルコニア(2000℃)などがあります。ラボに最適なチューブの選び方を学びましょう。

グラファイト炉の用途は何ですか? 先進材料の超高温処理を実現

グラファイト炉が、制御された無酸素環境下で焼結、グラファイト化、溶解などの高温プロセスをどのように可能にするかをご覧ください。

黒鉛の温度依存性とは?高温使用における強度と酸化のバランス

黒鉛の強度が温度とともにどのように増加するか、しかし酸化によってどのように制限されるかを学びます。真空、不活性ガス、空気中での応用に向けた重要な洞察。

高温ろう付けとは何ですか?複雑なアセンブリ向けに、強力でクリーンな金属接合を実現する方法

毛細管現象を利用して450°C以上で優れた金属接合を生成する高温ろう付けについて学びましょう。異種材料や複雑なアセンブリの接合に最適です。

銅ろう付けの温度は何度ですか?強固な接合のための主要な範囲(1190°F~1550°F)をマスターする

HVAC、配管、金属接合のためのBCuPやBAg合金などのフィラーメタルに基づいた、正確な銅ろう付けの温度範囲(1190°F~1550°F)を学びましょう。

ろう付けプロセスとは?強力な金属接合のための主要パラメータをマスターする

ろう付けプロセスを学ぶ:ろう材を使用する金属接合方法。重要なフェーズ、時間と温度のバランス、そして接合品質を最適化する方法を理解する。

ろう付けの全工程とは?精密な技術で強力かつ永続的な金属接合を実現

ろう付けの全工程を学ぶ:溶加材の流れと毛細管現象から、高強度金属接合のためのフラックス法と真空法の比較まで。

炉の圧力スイッチは短時間運転(ショートサイクリング)の原因になりますか?断続的なシャットダウンの本当の原因を診断する

故障した炉の圧力スイッチが短時間運転を引き起こす仕組みと、ベントの詰まりから凝縮水ドレンの閉塞まで、真の根本原因を診断する方法を学びましょう。

焼入れの熱処理プロセスとは?最大の硬度を達成するためのガイド

焼入れが急速冷却によって金属の硬度をどのように高めるかをご覧ください。そのプロセス、トレードオフ、そして焼き戻しが不可欠である理由を理解しましょう。

鋼の焼入れの用途は何ですか?硬度、耐摩耗性、性能に関するガイド

切削工具、ギア、ベアリングなど、鋼の焼入れの主要な用途について学びましょう。ニーズに合わせて浸炭焼入れや焼入れなどの方法を比較してください。

炉の温度はどのように制御されていますか?Pid制御で精密な熱処理を実現

現代の炉が、焼結、熱処理、研究室での研究において、安定した再現性のある温度を実現するために、閉ループPID制御システムをどのように使用しているかをご覧ください。

縦型炉と横型炉の利点は何ですか?研究室の効率とスペースを最大化する

縦型炉と横型炉を比較:優れた温度均一性、コンパクトな設置面積、精密なバッチ処理のためのより簡単な取り扱い。

焼結の機能とは?粉末を強固な固体部品に変える

焼結がどのようにして金属またはセラミック粉末を熱を使って固体部品に融合させ、強度、密度を向上させ、高度な製造を可能にするかをご覧ください。

Thcディストレートが蒸発する温度は何度ですか?最適な熱でVape体験をマスターしましょう

風味、効力、滑らかさのバランスをとるための理想的なTHCディストレートの気化温度(160〜220°C)を学びましょう。燃焼を避け、体験を最大限に高めましょう。

焼き入れと熱処理の違いは何ですか?主要な冶金プロセスをマスターする

違いを学びましょう:焼き入れは、金属の硬度と特性を変化させるための、より広範な熱処理プロセス内における急速な冷却ステップです。

ろう付けの利点は何ですか?複雑なアセンブリに対する優れた接合完全性の実現

異種材料の接合、最小限の歪み、高性能用途における真空ろう付けの優れた清浄度など、ろう付けの主な利点をご覧ください。

チャンバー炉の用途は何ですか?金属・材料の精密熱処理をマスターする

チャンバー炉が、ラボ研究や産業生産における精密熱処理、元素分析、セラミック焼結をどのように可能にするかを学びましょう。

バッチ炉の用途とは?研究室や作業場で精密な熱処理を実現

金属の熱処理、セラミックスの焼結、研究室での研究におけるバッチ炉の用途を発見してください。バッチ処理と連続処理のどちらを選択すべきか学びましょう。

銀ろう付けの温度範囲は何度ですか?金属接合プロセスを最適化しましょう

銀ろう付けに最適な温度範囲、主要な要因、および強力で耐久性のある金属接合のための雰囲気制御のヒントを学びましょう。

Timoox合成において、雰囲気制御炉はなぜ不可欠なのですか?炭素支持体を保護し、酸化物を強化します。

炭素の酸化を防ぎ、安定性を確保するために、TiMoOx複合酸化物の高温処理に不活性雰囲気制御がいかに重要であるかを学びましょう。

C-Sic-B4C複合材料を準備する際に、真空ホットプレス炉で約30Paの真空度を維持する必要があるのはなぜですか?

C-SiC-B4C複合材料にとって30Paの真空が不可欠である理由を学びましょう。これにより酸化が防止され、閉じ込められたガスが除去されることで緻密化が保証されます。

積層Zrc-Sic複合材料の焼結に真空ホットプレス炉による真空環境が必要なのはなぜですか?

1650℃の熱間プレス焼結中に、真空環境がZrC-SiC複合材料を酸化や機械的劣化からどのように保護するかを学びましょう。

Irsn/Mmt触媒に雰囲気制御付き管状炉が必要なのはなぜですか?精密な2〜3 Nm粒子合成を実現

雰囲気制御付き管状炉が、高性能IrSn/MMT触媒合成に不可欠な水素還元とアルゴンパージをどのように可能にするかをご覧ください。

ダイヤモンド・アルミニウム複合材において、真空熱間プレス炉がSpsよりも高い熱伝導率を達成するのはなぜですか?

真空熱間プレスが、必須の界面拡散を促進することにより、ダイヤモンド・アルミニウム複合材の製造においてSPSを上回る理由を学びましょう。

Fecral予熱に高温雰囲気炉が必要なのはなぜですか?鍛造を最適化し、割れを防ぐ

FeCrAl合金の熱可塑性と応力緩和を鍛造前に最適化するために、雰囲気炉で1,100℃~1,200℃の予熱が不可欠である理由を学びましょう。

環状蒸気管は、活性炉の効率をどのように向上させますか?炭素反応率と品質の最大化

マイクロポア設計の環状蒸気管が蒸気供給を最適化し、反応速度を加速し、均一な細孔発達を保証する方法をご覧ください。

真空熱間プレス炉の油圧システムは、Ti2Alnb/Ta15の接合にどのように貢献しますか?

油圧が微小塑性変形と原子拡散をどのように促進し、シームレスで高密度のTi2AlNb/TA15複合材接合を形成するかを学びましょう。

ダイヤモンド/Al-Cu複合材に真空ホットプレス炉による真空環境が必要なのはなぜですか?

ダイヤモンド/Al-Cu複合材にとって真空環境が不可欠である理由を発見しましょう:酸化の防止、黒鉛化の抑制、および密度の確保。

20 Mpaから50 Mpaへの焼結圧力の増加は、Cr-50 Wt% Siにどのような影響を与えますか?密度向上と結晶粒微細化

50 MPaの焼結圧力が、空孔の除去、結晶粒径の微細化、CrSi2化合物相の安定化によってCr-50 wt% Si合金を最適化する方法を学びましょう。

チューブ炉の圧力は?研究室における必須の安全限界

安全なチューブ炉操作のための重要な圧力限界(≤0.2 bar)を学びましょう。研究室での熱衝撃や石英管の破損を防ぎます。

Nvp/Cの炭素コーティング焼成に雰囲気管状炉はどのように貢献しますか?陰極伝導率の向上

雰囲気管状炉が、炭素化のための不活性環境を提供し、同時にバナジウムの酸化を防ぐことで、NVP/C合成を可能にする方法を学びましょう。

高温ホットプレス炉の超高真空環境は、Mo-Na合金にどのような影響を与えますか?純粋な微細構造を実現する

超高真空ホットプレス(5x10⁻³ Pa)がMo-Na合金の微細構造を精製し、酸化を防ぎ、優れた冶金結合を保証する方法を学びましょう。

真空熱間プレス炉の真空環境はどのような機能を持っていますか?Cu/Wc複合材料の性能を最適化する

真空熱間プレス炉の真空環境が酸化を防ぎ、結晶粒界を精製してCu/WC複合材料の特性を向上させる方法を学びましょう。

C-Sic-B4C-Tib2合成における真空熱間プレス炉の役割とは? 2000℃の高精度焼結を実現

真空熱間プレス炉が、熱、圧力、真空を通じてC-SiC-B4C-TiB2複合材料のその場合成と焼結をどのように促進するかを学びましょう。

真空熱間プレス炉の主な機能は何ですか?Vhpベリリウムの焼結と純度

真空熱間プレス炉が反応性ベリリウム粉末を高密度バルク材料に変換し、酸化を防ぐ方法を学びましょう。

タングステン電極を備えた真空アーク炉の主な機能は何ですか?高純度合金の溶解を実現する

真空アーク炉の不消耗タングステン電極が、複雑な高エントロピー合金の純粋で高温の溶解をどのように可能にするかを学びましょう。

Ti-43Al-4Nb-1Mo-0.1Bの焼結に高真空が必要なのはなぜですか?純度と破壊靭性を確保する

酸化を防ぎ、材料の密度を最大化するために、Ti-Al合金の焼結に高真空環境(10⁻³ Pa)が不可欠である理由を学びましょう。

真空熱間プレス炉は、(Cu–10Zn)-Al2O3ナノコンポジットの固化をどのように促進しますか?

真空熱間プレスが、900℃の熱と25MPaの圧力、10⁻³ torrの真空を使用して、高密度で酸化のない(Cu–10Zn)-Al2O3コンポジットを作成する方法を学びましょう。

Sicf/Ti-43Al-9V複合材における炉冷の役割とは?マイクロ構造と相制御をマスターする

真空熱間プレス炉の炉冷機能が、SiCf/Ti-43Al-9Vの相組成を制御し、応力を解放する方法を学びましょう。

炉とレトルトの違いは何ですか?工業用加熱システムの理解

炉とレトルトの主な違いを学びましょう:炉は熱を供給し、レトルトは材料処理のために密閉された制御された雰囲気を作り出します。

炉にはどのような要素がありますか?用途に応じた主要コンポーネントの理解

炉の主要な要素について学びましょう。筐体や制御システムなどの普遍的なコンポーネントから、真空、雰囲気、溶解用途向けの特殊部品まで。

チャンバー炉の機能とは?材料の精密な熱処理をマスターする

乾燥、硬化から高度な熱処理、焼結まで、精密な温度および雰囲気制御を備えたチャンバー炉の核となる機能を発見してください。

熱分解油は精製できますか?バイオ原油から高価値燃料を引き出す

熱分解油が、その高い酸素含有量と腐食性を克服し、水素化処理と安定化によっていかにして価値ある燃料や化学物質にアップグレードされるかをご覧ください。

熱処理における炉とは?完全な環境制御システム

熱処理炉は、材料の特性を改変するための精密なシステムです。温度制御と管理された雰囲気がいかにして一貫した結果をもたらすかをご覧ください。

銅を溶かすには炉を何度にする必要がありますか?1150~1200℃で完璧な注湯を実現しましょう

銅を効果的に溶解するために必要な正確な炉の温度、過熱要件、安全のヒント、一般的な鋳造欠陥を避ける方法について学びましょう。

炉の空気圧スイッチは何をしますか?ご家庭での危険なガス蓄積を防ぐ

炉の空気圧スイッチが、点火前に適切な換気を確保することで、一酸化炭素の危険を防ぐ重要な安全装置としてどのように機能するかを学びましょう。

チューブ炉のチューブを洗浄する方法は?安全で効果的な洗浄のためのステップバイステップガイド

チューブの完全性を維持しつつ、安全性と効果を確保するために、チューブの材質や汚染物質の種類に基づいたチューブ炉チューブの正しい洗浄方法を学びましょう。

炉の圧力スイッチが故障し続けるのはなぜですか?安全な運転のための根本原因を診断する

炉の圧力スイッチの頻繁な故障は、通気口の詰まり、送風ファンの故障、またはドレンの詰まりを示していることがよくあります。真の原因と解決策を学びましょう。

炉管の材質は何でできていますか?ラボの熱処理プロセスに最適な材料を選択する

炉管の材質(ステンレス鋼、石英、アルミナ)について学びましょう。温度、雰囲気、純度のニーズに最適なオプションを選択してください。

バッチ炉の異なる種類は何ですか?熱処理プロセスに最適なものを見つけましょう

ボックス炉、ピット炉、台車式炉、一体型焼入れ炉、ドロップボトム炉を探求しましょう。どのタイプが部品の形状、雰囲気制御、焼入れのニーズに適しているかを学びましょう。

誘導炉で銅を溶かすことはできますか?効率的で高品質な溶解のためのガイド

誘導炉が電磁加熱を利用して銅を効率的に溶解し、真鍮や青銅などの合金に均一で高品質な結果をもたらす方法を学びましょう。

アーク炉の最高温度は何度ですか?産業用溶解のための太陽のような熱の活用

アーク炉の温度はプラズマアーク内で15,000°Cを超えることがあり、効率的な製鋼のためには溶融金属浴は約1,600~1,800°Cで運転されます。

セラミックの焼結温度は何度ですか?強くて高密度のセラミックを実現するための熱をマスターする

セラミックの重要な焼結温度範囲(通常は融点の0.6倍超)を学び、溶融させることなく最適な密度と強度を達成する方法を理解しましょう。

真空炉とは?汚染のない熱処理のための究極ガイド

真空炉の仕組み、主要コンポーネント、そして優れた純度を実現するために、制御された無酸素環境で材料を熱処理する利点を発見してください。

軽アルミニウムスクラップの溶解に必要な電力消費量は?エネルギー効率とコストを最適化しましょう。

軽アルミニウムスクラップの溶解に必要な電力(600~625 kWh/トン)と、それが固体アルミニウムや鋼鉄と比較してどのように異なるかを学びましょう。

インドのホットプレスでは、温度は一般的にどのように制御されており、その欠点は何ですか?手動の欠点を発見する

インドのホットプレスにおける手動温度制御が品質問題を引き起こす理由と、自動化が熱的不安定性をどのように解決できるかを学びましょう。

焼成プロセスの出力は何ですか?精製された反応性材料のガイド

焼成がどのようにして精製された固体を生成し、化合物を分解し、製錬、セメント、セラミックス用の反応性材料を作り出すかを学びましょう。

焼成はCo2を生成しますか?熱分解における炭酸塩の役割を理解する

石灰石のような炭酸塩材料を加熱すると、焼成によってCO2が生成されます。それがいつ発生するのか、そしてそのプロセスの背後にある化学を学びましょう。

焼き戻しの条件とは?より強靭な鋼のための熱処理プロセスを習得する

温度、時間、冷却速度という3つの必須の焼き戻し条件を学びましょう。鋼部品の硬度と靭性の完璧なバランスを実現します。

金属に使用される炉とは?溶解、合金化、熱処理のためのガイド

電気アーク炉、誘導炉、真空炉といった主要な金属炉の種類を探ります。それらの溶解、精錬、高純度熱処理における用途を学びましょう。

熱処理の冷却プロセスとは何ですか?優れた材料特性を得るための焼入れをマスターする

熱処理における冷却速度が、焼入れから焼きなましに至るまで、ラボでの用途における金属の硬度、強度、延性をどのように決定するかを学びましょう。

浸炭処理の長所と短所は何ですか?耐摩耗性と疲労強度を高める

浸炭処理の長所と短所を探る:優れた表面硬度とプロセス複雑性およびコスト。大気式と真空式の方法をニーズに合わせて比較します。

焼結段階で材料を加工するのに適した温度はどれくらいですか?最適な焼結スイートスポットを見つける

材料の密度、強度、結晶粒構造のバランスをとるために、理想的な焼結温度(通常750°C~1300°C)を決定する方法を学びましょう。

鋼の焼入れは寸法を変化させますか?熱的・冶金学的変化の力をマスターする

鋼の焼入れがどのように寸法変化と歪みを引き起こすかを理解する。予測可能な結果を得るために、熱収縮と相変態を制御する方法を学ぶ。

磁器に必要な温度は? 6号錐と10号錐焼成のガイド

素焼き(08号錐~04号錐)から高温釉焼成(6号錐~10号錐)までの磁器の正確な焼成温度を学び、完全なガラス化を達成しましょう。

熱処理工程の欠点は何ですか?強度向上のためのトレードオフを理解する

金属の硬化の主な欠点、すなわち脆性の増大、内部応力、歪み、被削性の低下を探り、それらを管理する方法について解説します。

グラファイトは熱に耐えられますか?不活性環境下で3,600°Cという極限の可能性を解き放つ

グラファイトは不活性雰囲気下では3,600°Cで昇華しますが、空気中では450°Cを超えると酸化します。研究室でその耐熱性を最大限に引き出す方法を学びましょう。

焼結を利用するプロセスとは?高性能金属・セラミック部品を形成する鍵

焼結がいかにして粉末を固体部品に変えるかを発見しましょう。粉末冶金、セラミックス、先進製造におけるその応用を学びましょう。

Cu/Ti3Sic2/C/Mwcntsにはなぜ真空熱間プレス焼結炉が選ばれるのか?相対密度93%超を達成

銅複合材料に真空熱間プレスが不可欠な理由を学ぶ:酸化防止、MWCNTの保護、熱と力による優れた密度の達成。

Tial/Ti6Al4Vの作製における真空熱間プレス炉の役割は何ですか?高強度接合をマスターする

真空熱間プレス炉が、精密な高温、真空、圧力制御を通じてTiAl/Ti6Al4V接合を可能にする仕組みを学びましょう。

金属セラミック複合材料の焼結に真空が必要な理由とは?純粋で高密度の結果を実現

ホットプレス炉における高真空システムが、酸化を防ぎ、金属セラミック複合材料の強固な結合を確保するために不可欠である理由を学びましょう。

真空熱プレス炉の圧力印加システムは、Cu-Ti3Sic2の密度にどのように影響しますか? 高密度化を促進

真空熱プレス炉における一軸圧力印加が、摩擦を克服し、塑性流動を誘発してCu-Ti3SiC2複合材料を高密度化する方法を学びましょう。

Odsフェライト系ステンレス鋼の性能にとって、真空熱間プレス炉の真空システムがなぜ重要なのでしょうか?

真空システムがODS鋼を酸化からどのように保護し、熱間プレス中の安定した界面結合と優れた材料硬度を確保するかをご覧ください。

W-50%Cu 用真空熱間プレス炉の利点は何ですか?低温で 99.6% の密度を達成

真空熱間プレス炉が、圧力なし焼結よりも W-Cu 複合材料で 950°C という低温で理論値に近い密度を達成できる方法をご覧ください。

Rbbcシリコン浸透における高温真空炉の役割とは?セラミック合成を最適化する

高温真空炉が、精密な熱制御と毛細管現象を通じてRBBCにおけるシリコン浸透をどのように促進するかを学びましょう。

炭化ホウ素(B4C)に真空管炉を使用する必要性は?最適なプリフォーム焼結を実現する

B4C処理に高温真空管炉が不可欠である理由を学び、酸化を防ぎ、金属浸透を成功させる方法を理解しましょう。

実験室用ホットプレス焼結炉の真空システムは、Cuw30の特性にどのように影響しますか?純度を最大化してください。

ホットプレス炉の真空システムが、酸化と気孔率を排除してCuW30の密度99.1%と優れた導電性を達成する方法を学びましょう。

Pm-Hip接合にはなぜ高精度焼戻し炉が必要なのか?Sa508鋼の靭性を確保する

SA508鋼が焼戻しマルテンサイトを得て圧力容器の安全基準を満たすために、677℃での精密な熱制御がなぜ重要なのかを学びましょう。

Bzcyセラミックグリーンボディに油圧プレスが使用されるのはなぜですか?高密度でひび割れのない焼結結果を保証する

BZCYセラミックの緻密化、気孔率低減、焼結欠陥防止に高圧油圧プレスが不可欠な理由を学びましょう。

静的腐食試験における石英管反応チャンバー使用の技術的価値は何ですか?精度を達成する。

石英管反応チャンバーが高温腐食試験中に大気制御を可能にし、酸化を防ぐ方法をご覧ください。

Cr-Ni鋼の研究開発における誘導溶解炉の主な機能は何ですか?合金均質化の達成

誘導溶解炉が電磁攪拌を使用して、研究開発におけるCr-Ni鋼の均一な組成を確保し、巨視的偏析を排除する方法を学びましょう。

高密度Ni–35Mo–15Crの製造において、真空熱間プレス炉はどのような特定のプロセス条件を提供しますか?

真空度(1.33x10^-1 Pa)、温度(1200°C)、圧力(50 MPa)が熱間プレスを通じて高密度Ni–35Mo–15Cr合金をどのように生成するかを学びましょう。

S30403にとって、ボックス抵抗炉はどのような重要な実験条件を提供しますか?高温シミュレーションをマスターする

ボックス抵抗炉が、S30403ステンレス鋼に産業的なストレスをシミュレートするために、どのように精密な熱場と酸化雰囲気を提供するかを学びましょう。

熱間プレス焼結炉の主な機能は何ですか?高密度窒化ケイ素セラミックの準備をマスターする

熱間プレス焼結炉が熱と一軸圧を組み合わせて、高密度・高強度な窒化ケイ素セラミックを製造する方法を学びましょう。

真空炭管炉はどのような環境条件を提供しますか? Yagセラミックス焼結の最適化

真空炭管炉が1750℃、10^-3 Paに達し、無加圧焼結により完全に透明なYAGセラミックスを実現する方法を学びましょう。