あなたの研究室に高品質の機器と材料を提供する、信頼できる世界規模のサプライヤー!
について
ブログ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
製品
サンプルの準備
静水圧プレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
ガラス素材
バイオ化学装置
ロータリーエバポレーター
ガラスリアクター
高圧反応器
短経路蒸留
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
知識
会社
私たちについて
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
サービスサポート
お問い合わせ
メニュー
メニューを閉じる
サンプルの準備
静水圧プレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
ガラス素材
バイオ化学装置
ロータリーエバポレーター
ガラスリアクター
高圧反応器
短経路蒸留
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
知識
ブログ
について
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
よくある質問 -
無アルカリ・ホウアルミノケイ酸ガラス
ガラスの焼結温度は?精密なヒートコントロールで最適な接合を実現
理想的なガラス焼結温度範囲 (600°C ~ 900°C) と、その温度範囲が材料特性と用途に与える影響を確認します。
ガラス焼結とは?材料科学における精度と耐久性へのガイド
ガラス焼結、そのメカニズム、用途、耐久性のある高性能ガラス材料を作成する際の利点について学びます。
ガラスは焼結できるのでしょうか?ガラス焼結の利点と応用を発見する
ガラス焼結の仕組み、その利点、生物医学、光学、美術などの業界での応用について学びます。
焼結ガラスの目的は何ですか?研究所や産業におけるその多用途性を発見してください
耐薬品性や熱安定性などの重要な特性とともに、ろ過、分離、触媒などの用途に用いられる焼結ガラスについてご紹介します。
高温石英とは?極熱用途に不可欠
高温石英の熱安定性、炉での用途、航空宇宙や半導体製造などの業界にとっての利点を発見してください。
ガラス管と石英管の違いは?アプリケーションのための主要な洞察
組成、熱特性、用途など、ガラス管と石英管の主な違いを学び、ニーズに合った適切な材料を選択してください。
スパッタコートガラスとは何ですか?高度な薄膜でガラスの性能を強化
スパッタコートガラスが光学、エレクトロニクス、建築の反射率、導電性、耐久性などの特性をどのように向上させるかをご覧ください。
光ファイバー用ガラスの調製における気相堆積法の主な利点は何ですか?
高純度、耐久性、精度、拡張性など、光ファイバー製造における気相堆積の主な利点を発見してください。
石英管の熱衝撃とは?高温アプリケーションを保護する
水晶管における熱衝撃について、その原因、影響、高温環境において最適な性能を発揮するための緩和方法について学びます。
セラミック・パウダーの他の呼び名は?セラミックパウダーの多彩な形状と用途
アルミナ、ジルコニア、シリカ粉末などのセラミック粉末のさまざまな名前と、エレクトロニクスや航空宇宙などの業界でのそれらの応用について学びます。
炭化ケイ素はどのような産業で使用されていますか?主要セクターにおける炭化ケイ素の多彩な用途をご覧ください。
半導体、航空宇宙、工業炉など、炭化ケイ素がその卓越した特性から使用されている業界をご紹介します。
石英管は何をするのですか?高温用途に不可欠
アニールやCVDのような高温プロセスにおいて、石英管がどのように熱安定性、耐薬品性、試料の完全性を確保しているかをご覧ください。
低融点ポーセレンと高融点ポーセレンや中融点ポーセレンとの利点は何ですか?
焼成温度の低下、審美性の向上、歯科修復物の耐久性の向上など、低融点磁器の主な利点をご確認ください。
セラミックの代替品とは?お客様の用途に最適な代替品をお探しください
先端ポリマー、複合材料、ガラス、金属、さまざまな産業向けの人工材料など、最高のセラミック代替材料をご覧ください。
なぜKbrはIr試料調製に適しているのか?Kbrのユニークな利点
赤外放射に対する透明性、化学的不活性、取り扱いの容易さ、高品質のスペクトル生成など、KBrが赤外試料前処理に理想的な理由をご覧ください。
赤外線領域での使用に適したKbrの特性とは?Kbrの主な利点
赤外光に対する透明性、圧力下での可塑性、正確な分析のための干渉の最小化など、KBrが赤外分光分析に理想的である理由をご覧ください。
Ir分光法におけるKbrの代替品は何ですか?分析に最適なオプションを見つける
NaCl、CsI、KCl、ダイヤモンドアンビル、PEフィルムなど、赤外分光法におけるKBrの代替品とその用途を探る。
赤外分光法におけるKbrの代替物質とは?Irスペクトロスコピーのトップオプションを探る
CsI、NaCl、ポリエチレン、ダイヤモンドアンビルセルなど、KBrに代わる赤外分光セルをご紹介します。これらの特性、利点、制限について学びましょう。
化学におけるKbrとは?その性質、使い方、用途を知る
臭化カリウム (KBr)、その化学的特性、分光法、医学、写真などにおけるその多様な用途について学びます。
低温ろう付け合金とは?主な用途と利点の説明
低温ろう付け合金の組成、エレクトロニクス、自動車、HVACにおける用途、熱応力の低減などの利点をご覧ください。
なぜKbrは赤外分光分析に使用されるのか?正確な試料分析のための主な利点
赤外線に対する透明性、ペレット形成の容易さ、化学的不活性、費用対効果など、KBrが赤外線分光に理想的な理由をご覧ください。
Kbrの用途は?科学と産業におけるKbrの多彩な用途を知る
分光法、医学、写真、化学反応、光学製造における臭化カリウム (KBr) の多様な用途を探ります。
なぜ磁器を真空焼成するのか?優れた結果をもたらす真空焼成の利点をご覧ください。
真空下で磁器を焼成することで、歯科およびセラミック用途における耐久性、美しさ、精度が向上する理由を学びましょう。
石英チューブの用途主な用途と利点
半導体製造、材料合成、熱分析などの高温用途における石英管の用途を探る。
歯科用セラミックの別名とは?歯科用ポーセレンとその利点を知る
歯科用ポーセレンとしても知られる歯科用セラミックが、その審美性と耐久性により、クラウン、ブリッジ、ベニアに好まれる理由をご覧ください。
セラミックスは生体適合性か?医療および歯科用途のための主要な洞察
セラミックの生体適合性、医療用途、医療における安全性と性能に影響を与える要因を探る。
歯科用セラミックは何でできているのか?組成と利点を知る
シリカ、アルミナ、および耐久性と審美性に優れた歯科修復用の先端材料から作られる歯科用セラミックの組成、種類、および用途について学びます。
赤外分光法におけるKbrの用途とは?正確な固体試料分析に不可欠
透明で均一、高品質な固体試料分析のために、KBrがどのように赤外分光分析に使用されているかをご覧ください。KBrの主な利点とアプリケーションをご覧ください。
Kbrの利点は何ですか?アプリケーションの主な利点を発見する
耐食性、洗浄のしやすさ、柔軟性、小規模反応や生物学的反応における高温性能など、KBrの利点を探る。
なぜKbrはIrに使用されるのか?正確な分光測定のための主な利点をご覧ください。
赤外放射に対する透明性、ペレット形成、化学的不活性、コストパフォーマンスなど、KBrが赤外分光に理想的な理由をご覧ください。
なぜKbrがFtirに使用されるのですか?正確な分光法に対する主な利点を発見してください
赤外放射に対する透明性、化学的不活性、ペレット形成の容易さ、費用対効果など、KBrがFTIR分光に理想的な理由をご覧ください。
なぜKbrがFtirシステムでビームスプリッターやサンプルホルダーの支持材料として使用されるのですか?
KBr が FTIR システムに最適である理由をご確認ください。透明性、安定性、高い屈折率により、正確なスペクトル分析が保証されます。
Kbr が Ir 分光法に使用されるのはなぜですか?正確なスペクトル分析に対する主な利点を発見してください
赤外放射に対する透明性、ペレット形成の容易さ、鮮明なスペクトルを得るための試料の均一性など、KBrが赤外分光分析に不可欠な理由をご覧ください。
ろう付けに最適なアルミニウム合金は何ですか?ろう付け用途向けの優れた Al-Si システムを発見してください
シリコンを 7 ~ 12% 含む Al-Si 系がろう付けに最適なアルミニウム合金であり、ろう付け性、強度、耐食性を備えている理由をご覧ください。
炭化ケイ素は水に溶けますか?そのユニークな特性と用途を発見してください
炭化ケイ素が水に溶けない理由を知り、その化学的安定性、耐熱性、工業用途を探る。
ろう付けによく使われるものとは?主要部品と方法の説明
強靭で漏れのない接合に不可欠なろう材、加熱方法、ろうペーストの成分についてご紹介します。
アルミロウ付けにはどのような棒を使用すればよいですか?強力で耐久性のあるジョイントに関する重要な考慮事項
適合性、融点、温度制御、耐食性に焦点を当てて、アルミニウムに適したろう付け棒を選択する方法を学びましょう。
熱処理ができない材質は何ですか?主要な材料とその理由の説明
ポリマー、セラミック、複合材料など、熱処理ができない材料とその理由を確認します。より適切な材料選択のための制限事項を学びましょう。
焼き入れにはどのような材質が使用されますか?真空熱処理における不活性ガスの役割を発見する
窒素やアルゴンなどの不活性ガスを含む急冷に使用される材料と、汚染のない正確な冷却を実現するためのそれらの役割について学びます。
管状炉の管の材質は?高温用途に最適な材料の発見
アルミナ、溶融石英、タングステンなど、管状炉の管に使用される材料と、高温および腐食性環境に対するそれらのユニークな特性についてご紹介します。
赤外分析にKbrを使用する理由正確で効率的な試料分析を実現
赤外放射に対する透明性、化学的不活性、ペレット形成の容易さ、高品質のスペクトル。
スパッタリングLow-Eコーティングとは?先進のガラス技術でエネルギー効率を高める
スパッタリング Low-E コーティングがどのように現代の建物のエネルギー効率を向上させ、熱伝達を低減し、紫外線から保護するかをご覧ください。
歯科用セラミックの3種類とは何ですか?歯科修復における独自の利点を発見してください
モノリシック、プレス・トゥ・メタル、プレス・トゥ・ジルコニアの歯科用セラミックについて、その特性、用途、歯科修復における利点についてご紹介します。
セラミックスの強度は何で決まるのでしょうか?高性能材料の重要な要素
微細構造、組成、加工技術、欠陥制御など、セラミックの強度を決定する要因を発見してください。
Kbrの危険性は何ですか?臭化カリウムの取り扱いに関する重要な安全上のヒント
皮膚刺激、呼吸器のリスク、環境への懸念など、KBr の危険性について学びましょう。安全な取り扱いと保管のための安全上のヒントをご覧ください。
なぜ赤外分光分析にKbrを使うのか?Kbrペレットで正確なスペクトル分析を解き明かす
その透明性、使いやすさ、サンプル分析における干渉の少なさから、KBrが赤外分光分析に欠かせない理由をご覧ください。
Kbrは赤外分光分析で何に使用されますか?正確な固体試料分析のロックを解除する
KBrペレットが、透明性、化学的不活性、取り扱いの容易さにより、固体サンプルの正確な赤外分光分析を可能にすることをご覧ください。
臭化カリウムは何でできているのか?その組成、用途、特性を知る
臭化カリウム(KBr)について、その化学組成、特性、分光学、医学、写真における用途をご紹介します。
なぜKbrとNaclが赤外分光分析に使用されるのか?正確な分析のための主な利点
KBr と NaCl が、その透明性、化学的不活性性、費用対効果の点で、IR 分光法に不可欠である理由を発見してください。
なぜ臭化カリウムは赤外分光法の標準化合物として使用されるのか?そのユニークな利点
臭化カリウム (KBr) が IR 分光分析に最適である理由、つまり IR 放射線に対する透過性、化学的不活性、安定したペレット形成を学びましょう。
なぜKbrがFtirの標準物質として使用されるのか?正確な分光測定のための主な利点
KBrがなぜFTIRの標準物質として選ばれているのか、その理由をご覧ください。KBrは透明性が高く、試料を均一に分布させ、スペクトロスコピーのための正確な分析を提供します。
なぜKbrディスクが赤外分光分析に使用されるのか?正確な試料分析のための主な利点
透明で化学的に不活性、かつ均一なサンプル分析が可能なKBrディスクが赤外分光分析に不可欠な理由をご覧ください。
なぜKbrは赤外分光光度計で使用されるのか?正確な試料分析のための主な利点
KBr が IR 分光光度法に不可欠である理由を発見してください。IR 放射に対する透明性、ペレット形成の容易さ、および化学的不活性により、正確な結果が保証されます。
Ir分光法におけるKbrの役割は何ですか?正確な分子分析を可能にする
正確で信頼性の高い分子同定を可能にする、サンプル前処理のための赤外分光法におけるKBrの使用方法をご覧ください。
臭化カリウムが赤外分光分析に適した試薬である理由とは?主な利点の説明
臭化カリウム(KBr)が、赤外光に対する透明性、容易なペレット形成、干渉の少なさなど、赤外分光に理想的な理由をご覧ください。
臭化カリウムKbrの用途は何ですか?多彩な用途を探る
分光法、医学、写真、石油とガス、光学レンズ、実験室研究における臭化カリウム (KBr) の多様な用途を発見してください。
ろう付けに代わる方法は?溶接、はんだ付け、接着剤による接合とその他を探る
溶接、はんだ付け、接着剤による接着、機械的締結など、ろう付けに代わる主要な代替技術をご覧ください。それぞれの利点、限界、用途をご覧ください。
磁器は焼成する必要があるのでしょうか?磁器の創作における焼成の重要な役割を発見する
焼成が磁器にとって重要である理由を学び、ガラス化によって磁器を耐久性があり、多孔質ではない美しい素材に変えます。
オールセラミック修復に使用される3種類の材料とは?その利点と使用法を探る
オールセラミック修復のための3つの主要材料、ガラス系セラミック、多結晶セラミック、レジンマトリックスセラミックについてご紹介します。それぞれの特性と用途について学びましょう。
Kbrは赤外分光分析に使用されますか?試料調製と分析におけるKbrの役割を知る
固体サンプルを調製するための IR 分光法での KBr の使用方法、その利点、限界、および正確な分析のための代替方法について学びます。
Kbrの重要性は何ですか?分光法、医療、産業における主な用途
FTIR分析、医療、工業プロセスにおけるKBrの役割を含め、分光学、医学、工業におけるKBrの重要性を発見してください。
なぜKbrだけが赤外分光に使われるのか?主な利点と用途の説明
赤外放射に対する透明性、化学的安定性、費用対効果など、KBrが赤外分光に選ばれる理由をご覧ください。
IrスペクトルにおけるKbrのピークは何ですか?サンプル分析におけるその役割を理解する
KBr が IR 分光法で透明である理由と、それによってサンプルの吸収バンドがどのように明確に観察されるかを学びましょう。
FtirにおけるKbrの役割とは?Kbrペレットで精密分子分析を解き明かす
KBr ペレットが透明で均質なサンプル前処理を可能にして正確な分子同定を可能にし、FTIR 分析をどのように強化するかをご覧ください。
Ftirサンプル前処理にKbrを使用する理由正確な分光測定のための主な利点
赤外光に対する透明性、化学的不活性、ペレット形成の容易さ、均一なサンプル分布など、KBrがFTIRサンプル前処理に理想的な理由をご覧ください。
なぜ臭化カリウムはFtirで使用されるのか?正確な分析のための主な利点
臭化カリウム(KBr)の透明性、不活性、コストパフォーマンスがFTIR分析に最適な理由をご覧ください。今すぐラボの精度を高めましょう!
IrにおけるKbrの役割とは?正確な分光分析のための重要な洞察
透明性、安定性、非反応性を備えたKBrが、精密な化学分析のためにどのように赤外分光法を強化しているかをご覧ください。
なぜ物質によって融点が違うのか?主な要因の説明
分子間力や分子構造などにより、物質によって融点が異なる理由を発見します。材料科学にとって重要な洞察。
歯科用セラミックの3つの種類とは?正しい材料の選択ガイド
歯科用セラミックの3つの主な種類、すなわち石英系ポーセレン、ガラス系セラミック、酸化物系セラミックと、それらのユニークな特性と用途について説明します。
Kbrの危険性とは?正しい取り扱いで健康を守ろう
毒性、皮膚刺激性、呼吸器への危険性、ブロミズムなど、KBrの危険性について学ぶ。重要な安全対策について学ぶ。
なぜKbrはIrで不活性なのか?正確な分光学におけるKbrの役割
KBr が IR 分光法で不活性である理由、そのイオン構造、および IR 分析でのサンプル前処理における KBr の利点について学びます。
ろう付けに使用される最も一般的な材料とは?強力な接合部のためのトップフィラーを発見する
最も一般的なろう付け材料 (銀、銅、ニッケル、金ベースのフィラー) と、高品質で耐久性のある接合を実現するためのそれらの用途について学びます。
ステンレス鋼のろう付けを困難にする元素は何ですか?酸化皮膜の課題を克服する
酸化膜がステンレス鋼のろう付けを難しくする理由を発見し、強くて耐久性のある接合を実現する効果的な方法を学びましょう。
安全なろう付けとは何ですか?安全なろう付けプロセスのための重要なヒント
リスクを最小限に抑えるための保護具、換気、取り扱い手順などのろう付けの安全対策について学びます。
焼入れできない材料は?材料選択のための重要な洞察
アルミニウム、銅、ポリマー、セラミックなどのどの材料が硬化できないかを確認し、代替の強化方法について学びます。
急冷の危険性は何ですか?安全な金属加工のためのリスクと解決策
熱ストレス、化学的リスク、安全上の懸念など、焼入れの主な危険性を調査し、それらを効果的に軽減する方法を学びます。
3種類のテンパリングとは何ですか?低温、中温、高温のテンパリングに関するガイド
低、中、高焼戻しプロセス、その温度範囲、微細構造、鋼の特性を最適化するためのアプリケーションについて学びます。
歯科におけるセラミックの種類とは?そのユニークな利点をご覧ください
ファインセラミックス、ガラスセラミックス、ジルコニアなど、歯科用セラミックスの主な種類と、現代歯科医療におけるその用途をご紹介します。
Kbrは赤外線を吸収するか?正確な赤外分光測定のための重要な洞察
中赤外域での透明性、干渉の少なさ、サンプル調製の容易さなど、KBrが赤外分光に理想的な理由をご覧ください。
融点と沸点に影響を与える要因は何ですか?材料特性の背後にある科学を解き明かす
分子間力、分子量、構造、圧力など、融点や沸点に影響を与える主な要因を探る。
最も一般的なブレージングロッドとは?接合ニーズに最適なものを見つける
アルミニウム-シリコン系、銅-リン系、銀系、ニッケル系合金など、最も一般的なブレージングロッドとその用途をご紹介します。
焼き戻しと焼き入れの違いは何ですか?金属の強度と靭性を最適化
さまざまな用途で金属の硬度、靱性、延性を高めるための熱処理プロセスにおける焼き戻しと焼入れがどのように異なるかを学びます。
ステンレスはなぜろう付けしにくいのですか?強力な関節を実現するための課題を克服する
ステンレス鋼のろう付けが難しい理由、洗浄の重要性、真空ろう付けなどの効果的なろう付け方法についてご紹介します。
セラミック特性の密度とは?材料選択のための重要な洞察
セラミック特性の密度、それに影響を与える要因、および強度、熱伝導率、重量などのアプリケーションへの影響を調べます。
臭化カリウムは人体に安全か?リスクと安全な使用法を理解する
臭化カリウムの歴史的使用法、毒性リスク、安全な取り扱いガイドラインなど、人間に対する安全性について学ぶ。
熱容量が大きいと融点も高い?材料の熱的性質を解き明かす
熱容量と融点は異なる熱特性です。熱容量が大きいからといって融点が高くなるわけではない理由と、その実用的な意味について学びましょう。
アルミニウムとスチールはろう付けできますか?丈夫で耐久性のあるジョイントのための専門家のアドバイス
適切な溶加材、表面処理、ろう付け方法を使用してアルミニウムと鋼をうまくろう付けし、強力で信頼性の高い接合を実現する方法を学びます。
アルミニウムをろう付けするときにフラックスを使用する必要がありますか?強くて耐久性のあるジョイントのための重要なヒント
アルミニウムのろう付けにフラックスが重要な理由、適切なタイプの選び方、強力で信頼性の高い接合を実現するためのヒントをご覧ください。
Kbrは何に使える?Kbrの多彩な用途をご覧ください。
分光学、医学、写真、ガラス製造などにおけるKBrの多様な用途をご覧ください。KBrが科学や産業界で重要な化合物である理由をご覧ください。
融点は変わるのか?主要な影響因子を理解する
不純物、圧力、粒子サイズ、加熱速度が物質の融点とその用途をどのように変化させるかを発見します。
化学気相成長法にはどのような利点がありますか?コーティングの精度と耐久性を引き出す
高純度コーティング、精密制御、環境効率など、化学気相成長の主な利点をご覧ください。
硬化すると強度が増すのでしょうか?金属の耐久性とパフォーマンスを向上
焼入れによって金属の強度、靱性、耐摩耗性がどのように向上するかを確認し、精度を高めるための真空焼入れの利点について学びましょう。
アルミニウムの焼入れ熱処理とは?強度と性能を高める
焼き入れ熱処理によってアルミニウムの強度、硬度がどのように向上し、航空宇宙や自動車などの用途が強化されるかを学びましょう。
赤外分光法の限界とは?主な課題を解説
サンプルの前処理、感度、干渉など、赤外分光法の主な制限事項をご覧ください。ラボのために十分な情報に基づいた決定を下しましょう。
プレスドペレット法の利点とは?サンプル前処理の精度と効率を高める
サンプルの均質性の向上、コンタミネーションの低減、分析精度の向上など、プレスドペレット技術の主な利点をご覧ください。
硬化が機械的特性に与える影響は何ですか?強度と耐久性の向上
焼入れによって金属の硬度、強度、耐摩耗性がどのように向上し、延性と靱性のバランスが取れて最適な性能が得られるかを学びましょう。
鋳物の熱処理プロセスとは?優れた性能のために材料特性を最適化する
熱処理が鋳物の硬度、強度、耐食性をどのように向上させるかをご覧ください。焼きなまし、真空処理などをご覧ください。
アルミニウムはろう付けできる?最良の方法と利点を知る
真空ろう付け、火炎ろう付け、炉ろう付けなどの方法を使用してアルミニウムをろう付けする方法を学び、酸化のない結果を得るための真空ろう付けの利点を探ります。
融点化学は何に影響されるのか?主な要因と実際の応用例を解説
分子間力、分子構造、純度、圧力が、化学における融点とその応用にどのような影響を与えるかをご覧ください。
材料の熱処理で最も重要な3つの要素は何ですか?材料の最適なパフォーマンスを引き出す
材料の熱処理における重要な要素、つまり温度制御、時間管理、環境を理解します。今すぐ材料のパフォーマンスを強化しましょう!