あなたの研究室に高品質の機器と材料を提供する、信頼できる世界規模のサプライヤー!
について
ブログ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
製品
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
会社
私たちについて
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
サービスサポート
お問い合わせ
メニュー
メニューを閉じる
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
ブログ
について
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
よくある質問 -
Rrde 回転ディスク(リングディスク)電極 / Pine、日本Als、スイスMetrohm ガラスカーボン プラチナ対応
発熱体の動作温度はどのくらいですか?用途の熱要件に合った材料を選びましょう
ニクロム、カンタル、SiCなどの材料と動作雰囲気によって、発熱体の動作温度が250℃から1800℃以上にどのように決定されるかを学びましょう。
発熱体で発生する熱が依存する要因は何ですか?精密な制御のためのジュールの法則をマスターする
ジュールの発熱の法則の原理に基づいて、電流、抵抗、および時間が発熱体の熱出力をどのように決定するかを学びましょう。
最適な発熱体はどれですか?温度と予算に合った適切な材料の選び方
ニクロム、カンタル、セラミック発熱体を比較します。どの材料が特定の温度と用途のニーズに対して最高の性能を発揮するかを学びましょう。
最も効率的な発熱体は何ですか?それは熱の発生ではなく、熱伝達に関するものです
発熱体の効率がエネルギー変換ではなく、用途によって決まる理由を発見してください。伝導、対流、放射を特定の加熱タスクに適合させる方法を学びましょう。
膜の均一性とは?一貫したデバイス性能と歩留まりの鍵
半導体および光学コーティングプロセスにおいて、膜の均一性がデバイスの信頼性と製造歩留まりにいかに重要であるかを学びましょう。
再生の温度は何度ですか?除湿システムの効率を最適化する
除湿システムに最適な再生温度範囲(65~85℃)と、エネルギー効率と除湿性能のバランスの取り方を発見してください。
スクリューコンプレッサーの欠点は何ですか?購入前に考慮すべき主要なトレードオフ
スクリューコンプレッサーの主な欠点(高額な初期費用、部分負荷時の非効率性、複雑なメンテナンスなど)を探り、十分な情報に基づいて購入できるようにしましょう。
クールグラインディング技術とは何ですか?熱に敏感な材料のための効率的な粉砕を実現
液体窒素を使用して材料を脆化させ、熱に敏感な物質、弾性のある物質、または油性の物質を微粉砕できるようにする極低温粉砕(クライオジェニックグラインディング)の方法をご覧ください。
原子層堆積法とは?薄膜に原子レベルの精度をもたらす
原子層堆積(ALD)の仕組み、コンフォーマルコーティングなどの利点、そして精密薄膜のためにCVDよりもALDを選択すべき時について解説します。
スパッタリングに必要なエネルギーとは?精密な薄膜成膜を実現する
10~40 eVのスパッタリングしきい値から、効率的な薄膜成膜に必要な高電圧まで、スパッタリングの主要なエネルギーパラメータについて学びましょう。
スパッタコーティングの欠点は何ですか?アプリケーションにおけるトレードオフを検討する
スパッタコーティングの主な欠点(成膜速度の遅さ、高価な装置費用、敏感な材料に対する基板加熱のリスクなど)を探ります。
発熱体はどのように作られていますか?自己制御型Ptcセラミックヒーターの科学
PTCセラミックのような抵抗性材料から発熱体がどのように作られるか、そして安全と効率を高めるために温度を自己制御する方法を学びましょう。
管状発熱体の製造方法は?耐久性と効率性に優れた加熱のためのガイド
ニクロム線と圧縮されたMgO(酸化マグネシウム)粉末を使用して、優れた熱伝導性と電気絶縁性を実現する管状発熱体の製造方法を学びましょう。
石英ヒーターとセラミックヒーター、どちらが良い?スポット暖房と空間暖房の究極ガイド。
石英ヒーターとセラミックヒーターの主な違いを発見し、スポット暖房または部屋全体の暖房に最適なものを選びましょう。
プラスチック熱分解の効率とは?質量収率、エネルギー収支、経済的実現可能性を深く掘り下げる
プラスチック熱分解の真の効率を探る。これには、質量収率(油50~80%)、正味エネルギー収支、廃棄物から燃料への転換における経済的実現可能性が含まれます。
熱蒸着と分子線エピタキシーの違いは何ですか?適切な薄膜成膜方法を選択する
熱蒸着 vs. MBE:薄膜アプリケーションにおける速度と原子レベルの精度のトレードオフを理解する。
真空蒸着技術とは?高純度薄膜成膜ガイド
真空蒸着がミラーや電子機器などの用途向けに純粋で均一な薄膜をどのように成膜するかを学びます。プロセス、利点、および制限を理解します。
バイオオイル熱分解の利点は何ですか?廃棄物を再生可能エネルギーに変える
バイオオイル熱分解がいかにして有機廃棄物を再生可能燃料に変換し、埋立地の利用を減らし、分散型エネルギー生産を可能にするかを発見してください。
薄膜蒸発器とは?熱に弱い・粘性の高い材料のための穏やかなソリューション
薄膜蒸発器が、熱分解を最小限に抑えながら、迅速で穏やかな加熱によって敏感な混合物や粘性の高い混合物を分離する方法をご覧ください。
電子ビーム蒸着の用途は何ですか?光学・電子部品向けの高純度コーティングを実現
高融点材料に最適な電子ビーム蒸着が、高純度の光学コーティング、電子部品、航空宇宙部品にどのように使用されているかをご覧ください。
プラズマ熱分解装置の費用はいくらですか?投資を決定する主要因
プラズマ熱分解装置の費用に影響を与える変数(処理能力から原料の種類まで)を理解しましょう。完全なシステムの予算を立てる方法を学びます。
なぜ熱分解を選ぶのか?高度な熱分解技術で廃棄物を貴重な資源に変える
熱分解がいかにして有機廃棄物をバイオ燃料や化学物質に変換し、埋立処分に代わる持続可能な選択肢を提供し、循環型経済を支援するかを発見してください。
熱分解は自立可能か?エネルギー正味の廃棄物変換を達成する方法
スマートな設計と原料の選択を通じて、熱分解システムがいかにエネルギー自立性を達成できるかを学びましょう。正味エネルギー収支をプラスにするための重要な要素を発見してください。
熱分解には何種類ある?遅い熱分解、速い熱分解、フラッシュ熱分解を解説
熱分解の3つの主要なタイプ(遅い熱分解、速い熱分解、フラッシュ熱分解)を発見し、それらがバイオ炭、バイオオイル、または合成ガスの製品収量をどのように決定するかを学びましょう。
熱分解プロセスのリスクとは?環境、運用、経済的課題のガイド
汚染物質排出、不安定なバイオオイル、高エネルギーコスト、廃棄物変換における経済的実現可能性の課題など、熱分解の主なリスクを探ります。
熱分解における問題点とは?商業的実現可能性に対する主要な課題
熱分解の核心的な問題点を探る:高コスト、技術的ハードル、不安定なバイオオイル。商業的に実現可能なプロセスにするための障壁を学びましょう。
Dcマグネトロンスパッタリングはどのように機能しますか?優れた薄膜成膜を実現
DCマグネトロンスパッタリングが磁場を利用して、真空プロセスで導電性材料に効率的で均一なコーティングを施す方法を学びましょう。
発熱体の抵抗に影響を与える要因とは?正確な熱設計のための4つの主要な変数をマスターする
材料、長さ、断面積、温度が、アプリケーションの加熱エレメントの抵抗と電力出力をどのように決定するかを学びましょう。
発熱体はなぜ高い抵抗を持つのでしょうか?電気を効率的に熱に変換するため
ジュール熱を介して発熱体の高い抵抗がどのように効率的な熱生成を可能にするか、そして安全性と性能のために必要な場所に熱を集中させる方法を学びましょう。
加熱エレメントの効率はどれくらいですか?エネルギー変換の真実を解き明かす
電気ヒーターエレメントは、電力を熱に変換する効率がほぼ100%ですが、真の有効性はコストと用途によって異なります。
熱分解装置の構成要素は何ですか?廃棄物発電システムを完全に分解
熱分解プラントの5つの必須コンポーネント(反応炉、供給システム、加熱システム、凝縮システム、公害防止システム)を発見してください。それらがどのように連携して機能するかを学びましょう。
熱分解の廃棄物収量は?高効率変換で廃棄物を価値あるものに変える
熱分解がいかに有機原料の100%を貴重なバイオ炭、バイオオイル、合成ガスに変換し、真の廃棄物を最小限に抑え、資源回収を最大化するかを学びましょう。
熱分解生成物の目的は何ですか?廃棄物を貴重なバイオオイル、バイオ炭、合成ガスに変換する
熱分解がバイオマスと廃棄物を貴重な製品に変換する方法を学びましょう:燃料用のバイオオイル、土壌用のバイオ炭、エネルギー用の合成ガス。あなたの目標に合ったプロセスを見つけてください。
熱分解の利点は何ですか?廃棄物を再生可能燃料とバイオ炭に変える
熱分解がいかに廃棄物を貴重なバイオ燃料、バイオ炭、化学物質に変換し、埋め立て地の利用と化石燃料への依存を減らし、持続可能な未来を築くかを発見してください。
半導体プロセスにおけるAldとは?チップ製造における原子レベルの精密さの鍵
原子層堆積(ALD)がどのようにして、高度な半導体向けに超薄型で均一な膜を可能にし、比類のないコンフォーマリティと制御性を提供するのかをご覧ください。
スパッタリングでターゲットの背後に磁石が配置されるのはなぜですか?より速く、より純粋なコーティングのために電子を閉じ込めるため
マグネトロン・スパッタリングにおける磁石が、より高い成膜速度、より低い動作圧力、および基板の加熱の低減のために、いかに高密度のプラズマを生成するかを学びましょう。
マグネトロンスパッタリングの圧力範囲は?薄膜成膜プロセスを最適化しましょう
理想的なマグネトロンスパッタリングの圧力範囲(2x10⁻²~8x10⁻² mbar)を学び、高品質で高密度の薄膜を得るためにそれを最適化する方法を学びましょう。
焼入れの最速の方法は何ですか?攪拌した塩水で最大の硬度を達成する
攪拌した塩水や水のような最速の焼入れ方法で最大の硬度を達成する方法を発見し、歪みや亀裂を避ける方法を学びましょう。
イオンビーム成膜のプロセスとは?薄膜コーティングで比類のない精度を実現
イオンビーム成膜(IBD)が、重要な用途向けに、優れた密着性と制御性を備えた高純度で緻密な薄膜をどのように作成するかをご覧ください。
イオンビーム成膜の用途は何ですか?精密光学部品と半導体向けに優れた膜品質を実現
精密光学部品、半導体、センサーにおける主要なイオンビーム成膜(IBD)の用途を探ります。IBDがいかにして高密度で純粋、欠陥のない薄膜を生成するかを学びましょう。
イオンビームスパッタリング成膜技術とは?優れた薄膜品質と精度を実現
イオンビームスパッタリングが、精密光学、半導体、先端コーティング向けに、優れた制御によって高密度で均一な薄膜をどのように生成するかを学びましょう。
イオンビームデポジションの利点は何ですか?優れた薄膜品質と制御を実現
イオンビームデポジション(IBD)の主な利点、すなわち、優れた膜密度、純度、密着性、および高性能アプリケーションのための正確なプロセス制御についてご紹介します。
イオンビーム成膜技術はスパッタリングとどう違うのですか?優れた成膜制御のためのプラズマ分離
イオンビーム成膜とスパッタリングの主な違いを発見し、より高純度の膜と敏感な材料の処理のためのプラズマ分離に焦点を当てます。
イオンビームスパッタリングのプロセスとは?高精度な用途向けに優れた薄膜品質を実現
イオンビームスパッタリングが、光学、半導体、および優れた密着性を持つ先進材料向けに、高密度で均一な薄膜をどのように作成するかをご覧ください。
バイオリアクターの設計部品とその機能は何ですか?最適な細胞増殖のためのコアコンポーネントを習得する
バイオリアクターの容器、攪拌、通気、制御システムについて学びましょう。各部品が特定の生物学的プロセスをどのようにサポートするかを理解してください。
放電プラズマ焼結の理論とは?迅速かつ低温での緻密化ガイド
パルス直流電流と圧力を利用して迅速な緻密化と微細構造の維持を実現するプロセスである放電プラズマ焼結(SPS)の理論を探求します。
発熱体にはどのような金属が使われていますか?あらゆる温度と雰囲気に対応する材料ガイド
家電製品のニクロムから、高温工業炉用のモリブデンや炭化ケイ素まで、発熱体に使用される金属と材料についてご紹介します。
暖房に最適な要素は何ですか?最適な性能を得るために、用途に合った素材を選びましょう
ニーズに最適な発熱体を見つけましょう:安全性ならセラミック、即暖性なら石英、費用対効果ならニクロム。主なトレードオフを学びましょう。
発熱体は何でできているべきか?高温耐久性材料ガイド
ニクロム合金から炭化ケイ素まで、温度と用途のニーズに基づいて適切な発熱体材料を選択する方法を学びましょう。
発熱体の抵抗が高いのはなぜですか?電気を効率的に熱に変換するため
ジュール熱効果(P=I²R)を用いて、発熱体が安全かつ効率的に熱を発生させるために、なぜ高い抵抗が不可欠なのかを学びましょう。
バイオマスの熱分解プロセスとは何ですか?廃棄物を価値あるバイオ炭、バイオオイル、合成ガスに変える
バイオマスの熱分解が、酸素のない制御された熱分解によって有機廃棄物を価値あるバイオ炭、バイオオイル、合成ガスに変換する方法を学びましょう。
標準ふるいの種類はいくつありますか?AstmとIso規格のガイド
2つの主要なふるい規格(ASTM E11 & ISO 3310)、その構造タイプ、および正確な粒子分析のために適切なふるいを選択する方法について説明します。
バイオリアクターで監視すべき重要な要素にはどのようなものがありますか?最適なバイオプロセス制御のための必須パラメータ
細胞の増殖、収率、プロセスのスケーラビリティを最適化するために、pH、温度、溶存酸素(DO)、撹拌速度などの主要なバイオリアクター監視パラメータについて学びましょう。
医療機器コーティングとは何ですか?安全性、耐久性、性能の向上
TiNやCrNなどの医療機器コーティングが、手術器具やインプラントの生体適合性、耐摩耗性、潤滑性をどのように向上させるかをご覧ください。
バイオリアクターで維持される条件は何ですか?最適な細胞増殖のための温度、Ph、酸素、および混合の管理
バイオリアクターが細胞の生存率と生産性を最大化するために制御する、温度、pH、溶存酸素、攪拌といった主要なパラメーターについて学びましょう。
化学反応器の種類とは?バッチ式、連続式、特殊設計のガイド
プロセスを最適化するために、バッチ反応器、連続撹拌槽型反応器(CSTR)、プラグフロー反応器(PFR)、固定床反応器など、主要な化学反応器の種類を探ります。
ロータリーエバポレーターは何をしますか?精密なサンプル濃縮のための穏やかな溶媒除去
ロータリーエバポレーター(ロータバップ)がどのように真空蒸留を使用して低温で溶媒を除去し、熱に弱いサンプルの濃縮に理想的であるかを学びましょう。
プラスチックの熱分解は安全ですか?重大なリスクと工学的制御の理解
プラスチック熱分解の安全性について、火災、爆発、有毒な副産物のリスク、および安全な操作に必要な工学的制御を含めて探ります。
スパッタリングの方法:高品質な薄膜成膜のためのステップバイステップガイド
薄膜成膜のためのスパッタリングプロセスを学びましょう:真空設定からプラズマ点火、ターゲットへの衝突まで。均一で密着性の高いコーティングを実現します。
マグネトロンスパッタリングのターゲット温度はどのくらいですか?敏感な材料のための低温プロセス
マグネトロンスパッタリングが、プラスチックや電子機器のような熱に弱い基板に理想的な低温コーティング技術である理由をご覧ください。
スパッタリングマグネトロンの平均自由行程とは?高密度・高純度薄膜の鍵
マグネトロンスパッタリングにおける長い平均自由行程が、優れた膜密度、密着性、純度を実現する高エネルギー成膜を可能にする方法を学びましょう。
前へ
Page 14
次へ