あなたの研究室に高品質の機器と材料を提供する、信頼できる世界規模のサプライヤー!
について
ブログ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
製品
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
会社
私たちについて
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
サービスサポート
お問い合わせ
メニュー
メニューを閉じる
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
ブログ
について
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
よくある質問 -
効率的なサンプル混合と均質化のための実験用ディスク回転ミキサー
白金電極ホルダーに適さない材料は何ですか?実験装置の損傷を避けるために
リチウムなどの材料が白金電極ホルダーと互換性がないことを学び、合金化、汚染、および機器への永久的な損傷を防ぎましょう。
使用前にカーボンファイバーブラシに対して行うべき点検は何ですか?実験プロセスの信頼性を確保しましょう
性能問題や汚染を防ぎ、信頼性の高い実験結果を保証するために、カーボンファイバーブラシの必須の使用前点検手順を学びましょう。
カーボンファイバーブラシの機械的損傷を防ぐことが重要なのはなぜですか?最高の性能と長寿命を確保するために
カーボンファイバーブラシの機械的損傷が電気伝導率と表面積をどのように低下させ、システムの効率と信頼性に影響を与えるかを学びましょう。
適切なPtfe製洗浄バスケットはどのように選ぶべきか?効率的で安全なラボ洗浄のためのガイド
部品のサイズ、機器との互換性、メッシュの種類に基づいて、最適な洗浄結果を得るための適切なPTFE製洗浄バスケットの選び方を学びましょう。
Ptfe洗浄バスケットの使用手順は?完璧な結果のための3ステップガイド
PTFE洗浄バスケットを正しく使用するための3ステップの手順を学び、ラボでの効果的な洗浄、部品の安全性、機器の長寿命化を確実にします。
Ptfe製洗浄バスケットを使用する際の洗浄プロセス中に何を監視すべきですか?信頼性の高い結果を確保し、損傷を防ぐために
PTFE製洗浄バスケットの主要な監視手順を学びましょう:損傷の検査、ずれの防止、パラメーターの維持により、安全で効果的な洗浄サイクルを確保します。
サンプルホルダーは何でできていますか?純度を追求し、PtfeとPeekで設計されています
サンプルホルダーにPTFEとPEEKポリマーが使用されている理由をご覧ください。比類のない耐薬品性、熱安定性、そしてサンプル汚染の防止を実現します。
電気化学実験におけるサンプルホルダーの典型的な機能は何ですか?それは活性作用電極です。
電気化学においてサンプルホルダーが作用電極として機能し、正確な測定のために機械的サポートと電気的接続を提供する理由をご覧ください。
白金ディスク電極の実験前の必要な前処理は何ですか?信頼性の高い電気化学データを達成するために
機械研磨や化学洗浄を含む白金ディスク電極の必須の前処理手順を学び、正確で再現性の高い電気化学的結果を保証します。
白金ディスク電極はどのように研磨すべきか?信頼できる電気化学データを取得するための技術を習得する
正確な電気化学測定のために、傷一つなく再現性の高い表面を実現するための、アルミナを用いた白金ディスク電極の研磨手順を段階的に学びましょう。
バイオマスの触媒とは?バイオリファイナリープロセスに最適な触媒の選択
ゼオライト、酵素、担持金属など、バイオマス転換の主要な触媒と、プロセスに最適な触媒の選択方法を探ります。
電着法の応用とは?表面保護からナノスケール製造まで
電着の応用を探る:腐食防止、装飾仕上げ、PCB製造、および先進材料のためのナノ構造製造。
電気めっきの利点は何ですか?複雑な部品に精密コーティングを実現
費用対効果の高いスケーラビリティ、ナノスケール制御、複雑な形状への均一な被覆など、電気めっきの主な利点をご覧ください。
蒸着システムにおける膜厚はどのように制御されますか?精密で再現性のある薄膜成膜を実現する
水晶振動子マイクロバランス(QCM)が蒸着システムでどのように膜厚をリアルタイムで制御し、優れた精度と再現性をもたらすかをご覧ください。
インキュベーターはどのように加熱されるのか?研究室の成功のための温度管理をマスターする
加熱素子からPIDコントローラーまで、インキュベーターの加熱システムが細胞培養や研究などで正確かつ安定した温度をどのように確保しているかを学びましょう。
細菌培養器では何度が維持されるのか?37°Cの標準が説明する
臨床微生物学において、ヒト病原菌や中温菌の最適な増殖のために、なぜ37°Cが細菌培養器の標準温度なのかを解き明かします。
インキュベーターはどのように温度を制御するのか?精度と安定性に関するガイド
インキュベーターがセンサー、コントローラー、加熱方法を使用して、細胞培養のようなデリケートな実験作業のために精密な温度を維持する方法を学びましょう。
バイオマス変換の生成物とは?バイオ燃料、電力、再生可能材料を解き放つ
バイオ燃料、バイオ電力、バイオ製品を生産するための、熱化学的、生化学的、化学的というバイオマス変換の3つの主要な経路を探求します。
ゼオライト触媒の代替品とは?Mof、メソポーラスシリカ、金属酸化物を探る
MOF、メソポーラスシリカ、金属酸化物など、ゼオライト触媒の代替品を発見しましょう。特定の反応ニーズに合った触媒の選び方を学びましょう。
Cnt成長の触媒は何ですか?高品質カーボンナノチューブ合成の鍵を解き明かす
鉄、コバルト、ニッケルの触媒がCNTの成長をどのように促進し、電子機器から複合材料に至るまでの用途のために、直径、構造、品質を制御するかを発見してください。
不活性ガスでの作業は安全ですか?静かな窒息のリスクを明らかにします
窒素やアルゴンなどの不活性ガスの重大な安全リスクについて学びましょう。酸素置換の危険性と、研究室における不可欠な安全プロトコルを理解します。
真空注型と射出成形の違いは何ですか?プロジェクトに最適なプロセスを選択する
試作と量産における真空注型と射出成形を比較します。コスト、速度、材料、用途における主な違いを理解します。
アーク放電の原因とは?電気放電の物理学を解説
絶縁破壊と電離によって電気アークがどのように形成されるかを学びましょう。電気安全、溶接、回路設計に不可欠な知識です。
ろう付けに良いフラックスとは何ですか?強固で信頼性の高い接合のための適切な化学薬品の選び方
母材とフィラー合金に最適なろう付けフラックスの選び方を学びましょう。完璧な接合のために、酸化物の除去、保護、適切な濡れ性を確保します。
ろう付けまたはろう接用のフラックスを選択する際、どのような基準を考慮する必要がありますか?強力で信頼性の高い接合部を確保する
ろう付けフラックスを選択するための主要な基準を学びましょう:母材との適合性、溶加材との組み合わせ、および適切な活性化温度範囲。
炭化ケイ素は水と反応するとどうなるか?その安定性と熱水酸化を理解する
炭化ケイ素(SiC)が水と反応するタイミングと理由、室温での安定性、高温蒸気下での挙動について学びましょう。
炭化ケイ素(シリコンカーバイド)の構造の種類は?極限性能のための共有結合性ネットワーク固体
炭化ケイ素は、ダイヤモンドに似た四面体格子を持つ共有結合性ネットワーク固体です。その強力なSi-C結合は、極度の硬度、高温安定性、および化学的不活性性をもたらします。
化学工業ではどのような種類の蒸発器が使用されていますか?プロセスに最適な蒸発器を選択する
熱に敏感な材料向けに、薄膜蒸発器、強制循環式、撹拌薄膜式などの化学プロセスに最適な蒸発器の種類をご紹介します。
金型は何に使われますか?精密部品の大量生産を可能にする
金型がどのようにプラスチックや金属などの材料を成形し、大量生産を可能にし、一貫した部品を大量かつ低コストで製造できるかをご覧ください。
温度制御システムの例は何ですか?家庭用サーモスタットから産業用精密機器まで
簡単なオン/オフサーモスタットから、研究室や産業で使用される高度なPIDコントローラーまで、温度制御システムがどのように機能するかを学びましょう。
微生物学研究室で使われるオーブンは何ですか?滅菌用熱風オーブンガイド
微生物学研究室における熱風オーブンの役割を発見しましょう。ガラス器具、金属器具、耐熱性材料の乾熱滅菌に用いられます。
炭化ケイ素の温度限界はどのくらいですか?1600°Cから2500°Cで性能を最大化する
炭化ケイ素の温度限界は、空気中では1600°C、不活性雰囲気中では2500°Cに及びます。アプリケーションの主要な要因を学びましょう。
Spsシステムとは何ですか?特殊保護システムとスパークプラズマ焼結の比較ガイド
SPSシステムの意味を解説:電力網保護システムなのか、それとも高速材料焼結プロセスなのか?ここで重要な違いを学びましょう。
予防保全とは何ですか?反応的なカオスからプロアクティブな管理への移行
予防保全がコストのかかる故障を防ぎ、資産寿命を延ばし、計画的でプロアクティブなサービスによって運用の安定性を高める方法を学びましょう。
ミルジャーとは?適切な粉砕容器を選ぶためのガイド
ミルジャーとは何か、その仕組み、そして特定の粉砕用途に最適な材料(スチール、セラミック、超硬合金)の選び方を学びましょう。
撹拌槽における伝熱量は?プロセスに最適な温度制御をマスターする
撹拌機が化学反応、混合、晶析のための槽内の熱伝達効率をどのように向上させるかを学びます。U値やΔTなどの主要因を理解しましょう。
バイオマスは輸送燃料として利用できますか?バイオ燃料、プロセス、およびトレードオフに関するガイド
バイオマスがエタノール、バイオディーゼル、SAFなどの輸送用バイオ燃料にどのように変換されるかを探ります。プロセス、利点、および主要な課題について学びましょう。
凝縮器と蒸発器の違いは何ですか?効率的な冷却システムの鍵
凝縮器と蒸発器の決定的な違いを学びましょう:熱の移動方法、設置場所、そして冷凍・空調システムにおける役割。
フィールドアシステッド焼結技術(Fast)はどれくらい速いですか?高速で高性能な材料の緻密化を実現
FASTを発見してください:直接的な内部加熱を利用して、優れた特性を持つ高密度で微細な粒子の材料を迅速に製造する先進的な焼結方法です。
Sls(選択的レーザー焼結)の利点と欠点は何ですか? 機能的な複雑さを解き放つ
SLS 3Dプリンティングのトレードオフを探る:高強度でサポート不要の部品と、機能的な用途における粗い表面仕上げおよび限られた材料。
Slsプロセスの長所と短所は何ですか?複雑で機能的な部品を実現する
設計の自由度、部品強度、表面仕上げ、コストに関する考慮事項など、選択的レーザー焼結(SLS)の長所と短所を探る。
金属レーザー焼結はどのように機能するのか?複雑で高密度な金属部品を数日で実現
金属レーザー焼結(DMLS/SLM)がデジタルファイルから複雑な3D金属部品を層ごとに構築し、ラピッドプロトタイピングと不可能な形状を可能にする方法を学びましょう。
炭化ケイ素の耐熱性はどのくらいですか?最大1500°Cの極限的な熱に耐えます
炭化ケイ素は、最大1500°Cまでの優れた耐熱性を備え、優れた熱安定性、低膨張性、化学的不活性性により、要求の厳しい用途に対応します。
油性スラッジ処理方法とは?回収、処分、コストに関するガイド
熱的、物理的、化学的、生物学的な油性スラッジ処理方法を比較します。回収、コスト、処分目標に基づいて選択する方法を学びましょう。
スパークプラズマ焼結は他に何と呼ばれていますか? 先進材料のためのFastを解き放つ
スパークプラズマ焼結(SPS)は、電界アシスト焼結技術(FAST)とも呼ばれ、材料の迅速な低温緻密化を可能にします。
アディティブマニュファクチャリングはより安価ですか?3Dプリンティングが従来の製造方法よりもコストを削減できる場合を発見してください
プロトタイプ、複雑な部品、少量生産において、アディティブマニュファクチャリングが従来の製造方法よりも安価になる場合を学びましょう。数量と複雑さでコストを比較します。
Cvdダイヤモンドの形状は?人工的に作られた板状のラボグロウンダイヤモンド
CVDダイヤモンドが、天然の八面体ダイヤモンドとは異なり、層状の堆積プロセスにより平らな板状に成長する理由を学びましょう。
遠心ろ過の欠点は何ですか?高コスト、メンテナンス、製品損傷のリスク
遠心ろ過の主な欠点を探ります。これには、高い設備投資コスト、メンテナンスの要求、せん断による損傷、微細粒子に対する非効率性が含まれます。
遠心分離機の種類と用途は何ですか?分離ニーズに合った適切なツールを見つける
低速、高速、超遠心分離機について探求します。RCF、ローターの種類、および用途が、あなたの研究室に最適な遠心分離機をどのように決定するかを学びましょう。
XrfとAasの違いは何ですか?適切な元素分析ツールの選択
XRFは固体の迅速な多元素分析を提供し、AASは液体の高感度な単一元素測定を提供します。あなたのラボに最適なのはどちらかをご覧ください。
EdxとXrf、どちらが良いですか?ニーズに合った元素分析ツールを選ぶ
EDX vs XRF: スケール、感度、用途における主な違いを理解する。バルク分析または微量分析に最適な技術はどちらかを知る。
XrdとXrfの用途とは?元素分析と構造分析の違いを解き明かす
XRF(元素組成)とXRD(結晶構造)の主な違いを学び、材料に最適な分析手法を選択しましょう。
Ir分光計の基本的な構成要素は何ですか?Ftir装置の主要部品ガイド
IR分光計の4つの必須コンポーネント(光源、干渉計、サンプル、検出器)について学びましょう。正確な化学分析のためにFTIRがどのように機能するかを理解します。
臭化カリウム(Kbr)の用途は?歴史的な医薬品から現代の実験室の必需品まで
臭化カリウム(KBr)が赤外分光法における主要材料としての役割と、獣医学における抗けいれん薬としての役割という二重の役割を探り、なぜヒトでの使用が廃れたのかを解説します。
ホットマウンティングとコールドマウンティングの主な違いは何ですか?サンプルに最適な方法を選択する
材料分析のためのホットマウンティングとコールドマウンティングの主な違いを学びましょう。金属、ポリマー、またはデリケートなサンプルに最適な方法を選択してください。
Xrfの仕様とは?MgからUまでの元素分析ガイド
XRF分析装置の仕様(Mg~Uの元素範囲、ppmから100%の検出レベル、携帯性、ラボ向けの非破壊分析)について学びましょう。
Xrf測定は定性分析ですか、それとも定量分析ですか?元素分析におけるその二重の役割を解き明かす
XRFが迅速な元素同定から正確な濃度測定に至るまで、定性ツールとしても定量ツールとしてもどのように機能するかを発見してください。
油圧システムのメンテナンス要件は何ですか?最大限の稼働時間を実現するためのプロアクティブな戦略
油圧システムのメンテナンスにおける3つの主要な柱(流体管理、汚染制御、コンポーネント検査)を学び、高額な故障を防ぎましょう。
スプレー熱分解の利点は何ですか?費用対効果が高く、スケーラブルな薄膜製造を実現
スプレー熱分解の主な利点を発見してください:費用対効果、シンプルなセットアップ、およびエレクトロニクスと材料科学における大面積薄膜堆積のスケーラビリティ。
焼結金属は何に使われるのか?自動車部品から医療用インプラントまで
自動車のギアやフィルターから、自己潤滑ベアリング、カスタムの医療用インプラントに至るまで、焼結金属の多様な用途をご覧ください。
パルスDcスパッタリングはDcスパッタリングよりも優れていますか?アークフリー成膜のためのガイド
導電性材料または絶縁性材料に対して、パルスDCとDCスパッタリングのどちらを使用すべきかを学びましょう。アークの発生を防ぎ、安定した高品質の薄膜を実現します。
Ir分光法でKbrが使用されるのはなぜですか?クリーンで高品質な材料分析を実現しましょう
KBr(臭化カリウム)がIR分光法で好まれるマトリックスである理由を学びましょう。KBrは中赤外域で透明性を提供し、正確なサンプル分析を可能にします。
最新のUltフリーザー技術を導入するメリットは何ですか?コストを削減し、持続可能性を高める
最新のULTフリーザーがどのようにエネルギー使用量を30%削減し、自然冷媒で環境負荷を低減し、研究室のサンプルセキュリティを強化するかをご覧ください。
研磨パッドの材質、使用方法、メンテナンス方法とは?完璧な仕上げの技術を習得する
研磨パッドの構造、適切な番手の選び方、そして毎回完璧でプロフェッショナルな仕上がりを実現するための重要なメンテナンスのヒントを学びましょう。
研磨ガラスベースの機能とメンテナンスは何ですか?常に完璧なサンプル準備を保証するために
金属組織学のための平坦でアーティファクトのない表面を実現するために研磨ガラスベースが果たす重要な役割と、一貫した結果を得るための不可欠なメンテナンス手順について学びましょう。
研磨材としてのアルミナ粉末の特性と取り扱い上の注意点は何ですか?精密加工で完璧な仕上がりを実現
研磨用アルミナ粉末の重要な特性と、クロスコンタミネーションを防ぎ、安全を確保して完璧な表面仕上げを実現するための重要な取り扱い上の注意点について学びましょう。
実験を開始する前に、電極をどのように準備すべきですか?信頼性の高い結果を得るための段階的ガイド
電極調製の2段階プロセス、すなわち物理的洗浄と電気化学的活性化について学びましょう。電気化学実験における再現性と精度を確保してください。
アクリル電解セルはどう維持すべきか?適切な手入れで寿命を延ばす方法
アクリル電解セルの清掃、適切な保管、損傷を防ぐための定期的な検査を含む、不可欠なメンテナンス手順を学びましょう。
ガラス製電気分解セル全般の取り扱いに関するアドバイスは何ですか?正確な電気化学的結果を確保する
ガラス製電気分解セルの適切な取り扱い、洗浄、安全プロトコルを学び、汚染を防ぎ、研究室でのデータ精度を確保しましょう。
電極のメンテナンス方法は?正確な測定と長寿命を確保するためのガイド
測定の精度を確保し、機器の寿命を延ばすために、検査、洗浄、保管を含む電極メンテナンスの必須手順を学びましょう。
セル部品の耐熱限界はどこにありますか?実験室での壊滅的な故障を避ける
セルの耐熱性がガラス本体ではなく、POMやPTFEなどの内部プラスチックによって制限される理由を学び、恒久的な損傷を防ぎましょう。
Ultフリーザーが研究室にとって不可欠な機器であるのはなぜですか?重要な研究のためのサンプル完全性の確保
超低温フリーザーが生物学的劣化を食い止め、長期的なバイオバンキングを可能にし、研究室でのサンプル生存性を確保するために不可欠である理由をご覧ください。
Ultフリーザーにはどのような冷媒が使われ、その理由は?最新のユニットは環境に優しい炭化水素を使用
最新のULTフリーザーが、優れたエネルギー効率と低い環境負荷のために、カスケードシステムでプロパンとエタン冷媒を使用する理由をご覧ください。
Ultフリーザーの設置場所が重要なのはなぜですか?パフォーマンスを最大化し、サンプルを保護する
ULTフリーザーの設置がエネルギー使用量、サンプルの完全性、および研究室の安全性にどのように影響するかを学びましょう。研究室の効率と信頼性を最適化します。
利用可能なUltフリーザーの異なる構成は何ですか?あなたのラボに最適なモデルを選びましょう
ULTフリーザーの構成を探る:アップライト型、チェスト型、アンダーカウンター型。あなたのラボのアクセス性、効率性、スペースのニーズに最適なのはどれか学びましょう。
超低温フリーザーでのMrnaワクチンの保管に関する推奨事項は何ですか?-80°Cでの絶対的な安定性を確保する
mRNAワクチンを保管するULTフリーザーの主な推奨事項:温度管理、バックアップシステム、監視、安定性のための整理された容量。
タンパク質の推奨保存温度は何度ですか?長期的な安定性と活性を確保するために
長期保存のための-80℃から短期間使用のための4℃までのタンパク質の最適な保存温度、さらに必須のバッファーと取り扱いに関するヒントを発見してください。
-70°Cでの微生物保存に関する査読済み研究の知見は何ですか?長期保存のための信頼できる方法
微生物の-70°C保存に関する科学的コンセンサスを発見してください。生存率、機能、遺伝的完全性を維持し、一貫した結果を得る方法を学びましょう。
超低温フリーザーにはどのような種類のコンデンサーが使用されていますか?究極の信頼性のための空冷システム
ULTフリーザーは、効率的な除熱のために空冷コンデンサーに依存しています。それらがどのように機能するか、そしてサンプルを安全に保つためにメンテナンスがなぜ重要なのかを学びましょう。
超低温フリーザーのメインアクセスドアにはどのような特徴がありますか?最高のセキュリティと熱安定性を確保するために。
サンプル保護のための高密度断熱材、気密シール、安全ロックなど、超低温フリーザーのドアの重要な特徴を探ります。
超低温フリーザーの断熱材には何が使用されており、なぜそれが重要なのでしょうか?-80℃の安定性と効率性の鍵
高密度ポリウレタンフォームと真空パネルが、ULTフリーザーの性能、温度安定性、省エネにとって極めて重要である理由を発見してください。
超低温フリーザーを-80℃ではなく-70℃に設定することの利点は何ですか?エネルギーコストを30〜40%削減できます。
ULTフリーザーを-70℃に設定することで、エネルギー使用量を30〜40%削減し、機器の寿命を延ばし、ほとんどのサンプルに影響を与えることなく故障のリスクを低減する方法を学びましょう。
超低温(Ult)フリーザーは通常、どの温度範囲を維持しますか?サンプル完全性のための重要基準-80°C
ULTフリーザーは-60°Cから-86°Cを維持し、ワクチンや酵素などの敏感な生物学的材料を保存するための業界標準として-80°Cが用いられます。
Ultフリーザーは科学・医療分野にどのような広範な影響を与えていますか?研究と医療の未来を解き放つ
ULTフリーザーがどのようにして重要なサンプルを保存し、長期研究を可能にし、信頼性の高い-80°Cでの保管によって医療のブレークスルーを保護しているかをご覧ください。
臨床検査室におけるUltフリーザーの役割とは?正確な診断のための検体完全性の確保
-80℃のULTフリーザーがDNA、RNA、血漿などの生体検体をどのように保存し、信頼性の高い疾患診断と研究を可能にするかをご覧ください。
超低温フリーザーは、微生物サンプルの完全性をどのように保証しますか?重要な研究のための安定性を維持する
ULTフリーザーが極度の低温、高度な断熱材、気密シールをどのように使用して、サンプルの劣化を防ぎ、長期的な生存能力を確保するかを学びましょう。
Ultフリーザーはどのような追加の技術的特徴を提供しますか?サンプルのセキュリティと効率を最大化する
デュアル冷却システム、遠隔監視、省エネ技術など、最新のULTフリーザーの高度な機能を発見し、優れたサンプル保護を実現します。
Ultフリーザーのアラームシステムにはどのような機能がありますか?多層的な安全性でサンプルを保護しましょう
ULTフリーザーのアラームシステムについて学びましょう:サンプルを保護するための温度逸脱、停電、システム診断、およびリモートアラート。
ほとんどの超低温冷凍庫には、保存されているサンプルを保護するための安全機能は何ですか?冗長性とアラームシステム
二重冷凍システムと統合アラームが、-80℃の温度を維持することで壊滅的なサンプル損失を防ぐ方法をご覧ください。
超低温フリーザーを選択する際に考慮すべき要因は何ですか?サンプルの完全性と長期的な価値を確保する
ULTフリーザーを選択するための重要な要素を学びましょう:サンプルを保護するための温度範囲、容量、エネルギー効率、信頼性機能。
他の研究所では-70℃でのサンプル保存に成功していますか?生物学的材料の長期保存のための実績ある方法
-70℃が、実験室環境におけるDNA、RNA、タンパク質、微生物の長期保存にとって、実績があり効果的な温度である理由を発見してください。
ポジ型成形とは何ですか?精密な内面を得るためのプロセスを習得する
オス型(マンドレル)を使用して、複合材料や熱成形に最適な高精度な内面を持つ部品を作成するポジ型成形について学びましょう。
超低温フリーザーの価格帯はどのくらいですか?適切な投資でサンプルを保護しましょう
ULTフリーザーの価格は7,000ドルから35,000ドルの範囲です。サイズ、設計、機能がコストとラボのサンプル保護にどのように影響するかを学びましょう。
スペースが限られた研究室で利用できる超低温フリーザーのモデルにはどのようなものがありますか?研究室のレイアウトと保管を最適化しましょう
コンパクトな研究室向けのアンダーカウンター型およびベンチトップ型超低温フリーザーモデルを探ります。スペース、容量、サンプルの安全性のバランスを取る方法を学びましょう。
超低温フリーザーは一般的にどこで使用されていますか?研究室、病院、バイオテクノロジーにとって不可欠です
ULTフリーザーは、研究、病院、バイオテクノロジーにおける生物学的サンプルの保存に不可欠です。その重要な用途と利点について学びましょう。
デュアルエクストルーダーの利点は何ですか?マルチマテリアル印刷と水溶性サポート材印刷を可能にする
デュアルエクストルーダーがマルチカラー印刷、材料特性の組み合わせ、および複雑な3D印刷のための水溶性サポート材の使用をどのように可能にするかを発見してください。
スパークプラズマ焼結(Sps)を製造しているのはどこですか?主要なSps装置サプライヤーを見つける
スパークプラズマ焼結(SPS)の製造業者を調査し、この先進技術がいかにして急速かつ低温での材料の緻密化を可能にするかを理解しましょう。
電解槽における電気分解のプロセスとは?非自発的な反応を促進するためのステップバイステップガイド
電解槽が電気エネルギーを用いて化合物を元素に分解する方法を学びましょう。還元、酸化、イオン移動の主要なステップを解説します。
炭素繊維は導電性がありますか?その電気的特性とリスクに関するガイド
はい、炭素繊維は導電性があります。その構造が導電性にどのように影響するか、短絡や腐食のリスク、EMIシールドなどの用途について学びましょう。
カーボンブラシは電気の良導体ですか?驚くべき工学的選択
モーターや発電機でカーボンブラシが選ばれる理由、すなわち導電性と自己潤滑性、制御された摩耗のバランスを取り、信頼性を確保する方法を発見してください。
前へ
Page 12
次へ