セラミック断熱材は何に使われますか?産業効率のための高温ソリューションをマスターする

セラミック断熱材の用途を探る:炉の内張り、高温ガスケット、1200°Fを超える極端な熱管理のための取り外し可能なブランケット。

Si2N2O合成におけるジルコニア繊維フェルトの役割とは?熱効率と電気安全性の確保

Si2N2Oセラミック合成において、ジルコニア繊維フェルトが熱および電気の両方の断熱材として機能し、エネルギー損失とショートを防ぐ方法を学びましょう。

Ppfとコーティングの違いは何ですか?車のためのアーマーとスリックシェル

PPFは飛び石や傷に対する物理的なシールドであるのに対し、セラミックコーティングは光沢と耐薬品性を提供します。主な違いを学びましょう。

最高の耐熱温度に耐えられる断熱材はどれですか?用途に最適な高温断熱材を選択する

窒化ホウ素、炭化ケイ素、ジルコニアなどの高温断熱材を探る。それらの特性と、ニーズに基づいた選択方法を学ぶ。

ジルコニアセラミックスの用途とは?極限環境向け高性能ソリューションの解禁

生体医療、航空宇宙、産業分野におけるジルコニアセラミックスの用途を探る。その靭性、耐摩耗性、高温安定性について学ぶ。

セラミックファイバーの欠点は何ですか?主な取り扱いと耐久性のリスクを解説

セラミックファイバー断熱材の主な欠点を探ります。これには、物理的な脆さ、浸食に対する感受性、およびファイバーダストによる重大な健康リスクが含まれます。

セラミックは高温に耐えられますか?極度の熱に対する優れた材料を発見する

アルミナ、炭化ケイ素、ジルコニアなどの先進セラミックスが、金属の限界をはるかに超える優れた耐熱性をどのように提供するかを探ります。

セラミックスの最高温度は何度ですか?高温用途に最適な材料を見つける

アルミナ、窒化ケイ素、炭化ハフニウムなどのセラミックスの実際の使用温度限界を発見してください。ニーズに合った適切な材料の選択方法を学びましょう。

炉の断熱材にはどのような材料が使用されますか?最大限の効率と性能を実現するための主要材料

セラミック繊維、グラファイト、耐火金属などの炉の断熱材について探ります。温度、雰囲気、用途に基づいて選択する方法を学びましょう。

酸化ジルコニウムコイルで白金電線が巻かれているのはなぜですか?高温システムにおける信号の完全性を確保する

酸化ジルコニウムコイルが、高温の水中で白金電極をステンレス鋼の壁から絶縁することで短絡を防ぐ方法を学びましょう。

オートクレーブ割れ試験において、ジルコニアスリーブとガスケットはどのような重要な機能を果たしますか?データの精度を確保する

オートクレーブ割れ試験において、ジルコニアスリーブとガスケットがどのように重要な電気絶縁体として機能し、干渉やガルバニック腐食を防ぐかを学びましょう。

Shs実験の安全性においてセラミック絶縁体はどのように貢献しますか?実験室の着火精度と保護を強化しましょう

SHSリアクターにおける重要な電気的絶縁により、セラミック絶縁体がエネルギー伝達を最適化し、オペレーターの安全を確保する方法を学びましょう。

Cvdリアクターにおけるセラミック断熱材の機能は何ですか?熱的・機械的安定性の向上

KINTEKのセラミック断熱材がCVDリアクターの誘導コイルを保護し、エネルギー損失を最小限に抑え、チャンバーの正確な位置合わせを保証する方法をご覧ください。

セラミックチューブは何に使われますか?極度の熱と電気絶縁のための不可欠なコンポーネント

セラミックチューブは、過酷な環境下の炉、窯、センサー、高電圧システムにおいて、耐熱性、電気絶縁性、化学的不活性を提供します。

セラミックファイバーモジュールとは何ですか?急速な炉内張り用の高温断熱システム

セラミックファイバーモジュールがいかにして産業用炉やキルンに迅速な設置、優れた熱効率、優れた耐衝撃性を提供するかを学びましょう。

セラミックチューブは何でできていますか?用途に合った適切な材料の選び方

アルミナやジルコニアなどのセラミックチューブ材料、その特性、耐熱性、絶縁性、耐久性に応じて最適なものを選択する方法について学びましょう。

セラミックは金属よりも耐熱性が高いですか?高温材料の秘密を解き明かす

セラミックが融点と断熱性で耐熱性に優れる理由、そして金属が熱応力に対して延性と耐久性を提供する理由を発見してください。

IsプロセスにおけるH2So4分解装置に高温・耐腐食性セラミックスを使用する必要があるのはなぜですか?

IS水素製造におけるH2SO4分解に特殊な工業用セラミックスが不可欠である理由を、極度の熱とSO3酸化に耐えるために学びましょう。

Aem水電解スタックにおけるPtfeガスケットの主な機能は何ですか?効率とシールの最適化

PTFEガスケットがAEM水電解スタックで、アルカリ電解質に耐えながら、気密シールと電気絶縁をどのように提供するかを学びましょう。

セラミック断熱材はどのくらい持ちますか?20年以上の性能を引き出す

セラミック断熱コーティングの保管期間(18〜24ヶ月)と耐用年数(10〜20年以上)の違い、および寿命を最大化する方法を学びましょう。

黒鉛紙とガスケットはAl/B4C焼結をどのように支援しますか?金型を保護し、クリーンな離型を保証します。

黒鉛紙とガスケットが、アルミニウムの付着を防ぎ、Al/B4C複合材の焼結中に金型を保護する分離層として機能する方法を学びましょう。

Ccpdリアクターでアルミナ絶縁ディスクが必要なのはなぜですか?浮遊電位によるコーティング品質の向上

CCPDリアクターでアルミナ絶縁ディスクが基板を保護し、浮遊電位を確立してイオン損傷や表面欠陥を防ぐ方法をご覧ください。

最も強い種類のジルコニアは何ですか?適切な歯科用ジルコニアを選ぶためのガイド

歯科修復に最適な最強のジルコニアを発見しましょう。3Y-TZPの1,400 MPaの強度と、最適な臨床結果を得るための審美性とのトレードオフについて学びましょう。

耐火セラミックスとは?極度の熱と過酷な環境のためのエンジニアードバリア

耐火セラミックスがいかに極度の熱に耐え、腐食に抵抗し、高温の産業プロセスを可能にするかを発見してください。その主要な特性と用途を学びましょう。

炭化ケイ素は高温用途で使用されますか?Sicで極限の熱を克服

炭化ケイ素が1600°Cまでの高温用途において、耐熱衝撃性、強度、安定性を提供する最高の材料である理由をご覧ください。

マッフル炉にはどのような断熱材が使われていますか?高温性能と効率の鍵

マッフル炉の断熱材について学びましょう:耐火セラミックファイバー vs. 断熱耐火レンガ。温度、速度、耐久性に応じて適切な材料を選択してください。

セラミックファイバーはどのくらい持ちますか?寿命を数ヶ月から数十年まで最大化する方法

温度から化学的攻撃まで、セラミックファイバーの寿命に影響を与える重要な要素を学び、お使いの用途でその耐用年数を延ばす方法を発見してください。

Poegma電解液の導電率測定におけるPtfeガスケットの活用方法とは?電気化学測定における精度を確保する

PTFEガスケットが、液体POEGMA電解液の導電率試験において、不可欠な幾何学的制御、絶縁、および化学的安定性をどのように提供するかを学びましょう。

溶融塩パイプラインでセラミックファイバー断熱材を使用する目的は何ですか?流動性とエネルギー効率を確保する

高温溶融塩パイプラインのメンテナンスにおいて、セラミックファイバー断熱材が固化を防ぎ、熱損失を最小限に抑える方法をご覧ください。

超臨界流体電気化学セルにおいて、ジルコニア多孔質セラミックスはどのような役割を果たしますか?データの整合性を確保してください。

ジルコニア多孔質セラミックスが、電気化学セルにおけるイオン交換と汚染制御を提供する不可欠な塩橋としてどのように機能するかを学びましょう。

高温用途向けの材料を選定する際に考慮すべき要素は何ですか?長期的な性能のためのガイド

高温材料選定の主要な要素:クリープ耐性、酸化安定性、熱膨張、コストと性能のトレードオフについて学びましょう。

炉にはどのような断熱材が使用されていますか?熱効率と性能を最適化するためのガイド

セラミックファイバー、グラファイト、モリブデンシールドなどの炉の断熱材と、それらがエネルギー効率、加熱速度、プロセス品質にどのように影響するかについて学びましょう。

反応器インターフェースのシールに高温グラファイトガスケットが必要なのはなぜですか?リークフリー吸着データを確保する

吸着材再生のための高温吸着実験において、グラファイトガスケットが熱安定性と気密性を提供し、信頼性の高いデータを保証する上で、なぜ不可欠なのかを学びましょう。

照射および腐食実験において、高純度の塩サンプルを移送するために特殊な真空シーリングコンポーネントが必要なのはなぜですか?

塩照射および腐食実験における汚染防止に、高精度真空シール(10⁻⁶ Torr)が不可欠である理由をご確認ください。

セラミックスが炉のライニングに使用されるのはなぜですか?ピーク効率と耐久性を達成する

セラミックスが炉のライニングに理想的である理由を発見してください。その耐熱性、断熱性、化学的不活性性が、効率と寿命をどのように向上させるかを学びましょう。

最も強度の高いジルコニア相は何ですか?正方晶ジルコニアは比類のない靭性を提供します

相変態靭性により、亀裂の伝播に抵抗し、高応力用途に耐える正方晶ジルコニア(TZP)が最も強力な相である理由をご覧ください。

セラミックファイバーは何をしますか?優れた高温断熱と制御を実現

セラミックファイバーが、1260°Cを超える極限環境で、いかに優れた断熱性、電気抵抗性、安定性を提供するのかをご覧ください。

Si3N4 + Sicにおける制御窒素雰囲気の主な機能は何ですか?セラミックの優れた安定性を確保する

高温焼結中のSi3N4 + SiC複合材料における制御窒素雰囲気が熱分解と酸化をどのように防ぐかを学びましょう。

高多孔性高エントロピーセラミック断熱材は、In-Situ反応によって合成できますか?効率的かつ純粋なソリューション

in-situ反応と部分焼結により、追加の発泡剤なしで高多孔性高エントロピーセラミックを生成する方法を学びましょう。

炉の断熱材の利点は何ですか?効率、性能、寿命を最大化する

炉の断熱材がエネルギーコストを削減し、温度安定性を確保し、装置の寿命を延ばす方法を発見してください。用途に最適な材料の選び方を学びましょう。

セラミックスにおいて密度が重要なのはなぜですか?それは機械的強度と性能の鍵です

セラミックスの密度が強度、気密性、耐食性にとって極めて重要である理由を学びましょう。密度と多孔性の関係、およびそれが材料性能に与える影響を理解します。

マッフル炉にはどの断熱材が使用されますか?熱のニーズに合った耐火物を選びましょう

マッフル炉の断熱材について学びましょう:急速加熱のための耐火セラミックファイバーと、耐久性のための断熱耐火レンガ。あなたの研究室に最適なものを選んでください。

炉の加熱にはどのような材料が使用されますか?プロセスに合った適切なエレメントを選択してください

MoSi₂、黒鉛、CFC、合金などの最適な炉加熱材料を見つけましょう。温度と雰囲気のニーズに合わせて選択してください。情報に基づいた選択をしてください。

セラミックはどれくらいの高温に加熱できるか?陶器から先進材料による2700℃まで

セラミックの耐熱限界は大きく異なります。土器は1150℃でひび割れ、炭化ケイ素は2700℃に耐えます。あなたの熱的ニーズに合ったセラミックを見つけましょう。

高温Cvdシステムにおいて、ジルコニア繊維ウールはどのように断熱性と安全性を向上させるために利用されますか?

CVDシステムにおいて、ジルコニア繊維ウールが熱および電気的シールドとして機能し、熱伝達と危険な電気アークを防ぐ方法を学びましょう。

高アルミナ(Al2O3)耐火物の一般的な特性は何ですか?高温耐性による性能向上

1800℃までの用途に対応する高アルミナ耐火物の機械的強度、化学的安定性、誘電特性をご覧ください。

セラミック材料の分類とは?酸化物、非酸化物、複合材料のガイド

セラミックが酸化物、非酸化物、複合材料にどのように分類されるかを学び、アプリケーションの要求に最適な材料特性を一致させましょう。

Spsにおける窒化ホウ素(Bn)絶縁シートの目的は何ですか?熱的焼結効果と電気的焼結効果の分離

ZrB2のような導電性セラミックスの焼結において、窒化ホウ素絶縁シートが熱放射と電流効果をどのように分離するかを学びましょう。

Rrdeに窒化ホウ素が使用されるのはなぜですか?優れた絶縁性と保護材料で精度を向上

窒化ホウ素がRRDEに理想的な絶縁体である理由を発見してください。高い抵抗率、化学的不活性、および内部コンポーネントの保護を提供します。

高温用途にはどの断熱材が使用されますか?用途に合った適切な材料を選びましょう

ミネラルウール、セラミックファイバー、耐火断熱レンガなどを比較します。炉、キルン、産業プロセスに最適な高温断熱材を選択してください。

セラミックが金属よりも優れている点は何ですか?極限環境下での優れた性能を引き出す

高温、高摩耗、腐食性の環境でセラミックが金属を上回る理由を発見してください。硬度、安定性、耐食性について学びましょう。

炭化ケイ素チューブの特性とは?比類のない耐久性で極限条件を克服

炭化ケイ素チューブの特性を探る:極度の硬度、高温強度、耐食性、熱衝撃耐性により、過酷なサービス用途に対応します。

Llzto焼結に蓋付きるつぼとマザーパウダーを使用する理由とは?リチウム安定性のための必須技術

リチウム損失を防ぎ、高いイオン伝導性を維持するために、LLZTO焼結においてマザーパウダーと蓋付きるつぼがなぜ重要なのかを学びましょう。

アルミナの高温特性とは?その安定性、強度、限界を探る

アルミナの高温性能を探る:1800℃までの安定性、1000℃での強度保持、過酷な用途に対応する耐薬品性。

セラミックチューブは何に使われますか?極度の熱、断熱、純度にとって不可欠

炉、窯、研究室におけるセラミックチューブの重要な用途を発見しましょう。極端な温度、電気絶縁、化学的純度に対応します。

モリブデンは熱を伝導しますか?高温用途におけるその役割を解き明かす

モリブデンが138 W/m·Kの導電率と1700°Cまでの安定性を持ち、高温プロセスにおける主要な熱伝導体である理由を発見してください。

セラミックパウダーは何に使われるのか?あなたの業界向け高性能材料の可能性を解き放つ

セラミックパウダーが、航空宇宙、医療、エレクトロニクス分野の部品へとどのように変換され、比類のない硬度、耐熱性、耐久性を提供するのかを探ります。

焼結中にΒ-Al2O3ペレットが粉末で覆われるのはなぜですか? 揮発性制御をマスターしてセラミックスを改善する

ベータアルミナペレットを前駆体粉末に埋め込むことで、酸化ナトリウムの蒸発を防ぎ、相純度と高いイオン伝導率を確保する方法を学びましょう。

磁器はどれくらいの温度に耐えられますか?その真の耐熱性を解き明かし、熱衝撃を避けましょう

磁器の高温限界(最高1400℃/2550°Fまで)と、その性能と耐久性における熱衝撃の重要な役割を発見してください。

セラミックスはなぜ腐食に対してより耐性があるのか?比類のない化学的安定性の秘密を解き明かす

アルミナやジルコニアなどのセラミックスが、強力なイオン結合と安定した完全酸化された化学構造のために腐食に抵抗する理由をご覧ください。

セラミックスの化学的不活性とは何を意味するのか?非反応性材料の力を解き放つ

セラミックスが化学的に不活性である理由、腐食や溶出に対する耐性、そしてこの特性が医療、産業、食品用途にどのように役立つかを発見してください。

Llzo焼結にジルコニア製るつぼを使用する必要があるのはなぜですか?高純度全固体電池材料の確保

950℃でアルミナ汚染を防ぎ、化学的相純度を確保するために、LLZO焼結にジルコニア(ZrO2)るつぼが不可欠である理由を学びましょう。

Fast/Sps焼結炉の外側を覆うグラファイトフェルトの役割は何ですか?役割を解説

グラファイトフェルトが熱断熱性を高め、エネルギー損失を削減し、均一なサンプル品質を保証することで、FAST/SPS焼結をどのように強化するかを学びましょう。

ジルコニアにイットリアを添加する目的は何ですか?高性能セラミックの安定性と強度をマスターする

イットリアがジルコニアを安定化させ、ひび割れを防ぎ、歯科用クラウンや精密構造部品に高い破壊靱性を達成する方法を学びましょう。

ロックウールとセラミックファイバーの違いは何ですか?熱のニーズに合った断熱材を選びましょう

ロックウールとセラミックファイバー断熱材の主な違い(温度制限、安全性、コストなど)を明らかにし、プロジェクトに最適な材料を選択してください。

炭化ケイ素発熱体とは?産業プロセスに極限の熱を解き放つ

炭化ケイ素(SiC)発熱体がどのように機能するか、高温能力や耐久性などの主な利点、および寿命に影響を与える要因について学びましょう。

多段式水電解槽構造における絶縁ガスケットの主な機能は何ですか?

絶縁ガスケットが水電解槽で短絡や直流電流の流れを防ぎ、水素製造効率を最大化する方法を学びましょう。

セラミックパウダーは何でできているのか?先進セラミックス材料とその用途のガイド

酸化物、炭化物、窒化物を含むセラミックパウダーの組成と、用途に最適な材料の選択方法について学びましょう。

セラミック材料とは?その核となる特性と産業用途を理解する

極度の硬度、高温安定性、耐薬品性など、セラミック材料の決定的な特性と、その重要な産業用途を探ります。

炉に使用される断熱材は何ですか?最高の熱効率と安定性を実現する

炉の断熱材として使用される主要な耐火材料(耐火レンガやセラミックファイバーなど)を発見し、エネルギー効率と温度制御を向上させましょう。

炭化ケイ素と超硬合金のどちらが硬いですか?材料選択の鍵を発見する

炭化ケイ素の方が硬いですが、超硬合金の方が靭性が高いです。用途に応じて、硬度と靭性の重要な違いを学びましょう。

セラミック特性の密度とは?高性能用途向け材料選定ガイド

セラミック密度(2.0~6.0 g/cm³)が、航空宇宙、医療、産業用途における強度対重量比と性能にどのように影響するかを学びましょう。

炭化ケイ素はセラミックスよりも優れていますか?用途に最適な高性能テクニカルセラミックスを発見しましょう

炭化ケイ素は高性能テクニカルセラミックスです。その極めて高い硬度、熱伝導性、化学的不活性が、いつ最適な選択肢となるかを知りましょう。

セラミックスの利点は何ですか?要求の厳しいアプリケーションで究極の性能を引き出す

極度の耐熱性、優れた硬度、化学的不活性、優れた電気絶縁性など、セラミックス材料の主な利点を発見してください。

セラミックは何かと反応しますか?化学的不活性の限界を明らかにする

セラミックは強酸、強塩基、および高温で反応する可能性があります。特定の条件と、ニーズに合った適切なセラミックの選び方について学びましょう。

セラミックスには欠点がありますか?硬度と脆性のトレードオフ

セラミックスの主な欠点である脆性について探ります。これが性能、製造、および用途の適合性にどのように影響するかを学びましょう。

耐火物にはどのような材料が使われていますか?高温材料選定ガイド

アルミナ、シリカ、炭化ケイ素、グラファイトなどの耐火材料について学びましょう。極度の熱や化学的耐性に対して適切な材料を選ぶ方法を学びます。

オイル・水分離において、シールガスケットとサポートグリッドはどのような保護的役割を果たしますか?高圧完全性を確保する

化学的に不活性なガスケットと高強度のグリッドが、高圧オイル・水分離におけるバイパス漏れや膜の破損を防ぐ方法を学びましょう。

熱水温度はZro2にどのように影響しますか?結晶構造と粒子均一性の最適化

150℃を超える温度が二酸化ジルコニウムナノ粒子合成における相転移と均一な粒子サイズをどのように促進するかを学びましょう。

セラミックスは化学的に不活性ですか?その驚異的な耐食性を発見する

強力な原子結合と安定した結晶構造により、ほとんどの用途でセラミックスが化学的に不活性である理由を学びましょう。

焼結中にジルコニアのようなセラミック材料にどのような物理的変化が起こりますか?密度と強度を最大化する

焼結が多孔質のジルコニアを高強度セラミックに変える仕組みを、高密度化、気孔率の低減、体積収縮を通じて学びましょう。

セラミックが耐えられる最高温度は何度ですか?極度の高温性能ガイド

アルミナから炭化ケイ素まで、さまざまなセラミックの温度限界を発見し、高温用途に最適な材料の選び方を学びましょう。

セラミックスの主な欠点は何ですか?脆性という重大な課題

セラミックスの主な欠点がなぜ脆性であるのかを発見してください。その硬度と耐熱性にもかかわらず、高い衝撃を伴う用途での使用が制限されています。

炭化ケイ素(Sic)ヒーターは何に使用されますか?産業プロセス向けの信頼性の高い高温加熱

炭化ケイ素ヒーターがいかにしてセラミックス、ガラス、金属加工向けに1625℃までの信頼性の高い高温加熱を可能にするかをご覧ください。

なぜ溶融塩電解システムには高精度セラミック加熱ジャケットが必要なのですか?

溶融塩電解、イオン移動度、合成ガスH2/CO比の調整に高精度セラミック加熱ジャケットが不可欠である理由をご覧ください。

セラミックスには耐食性がありますか?過酷な用途のためにその不活性な性質を活用する

セラミックスが強力なイオン結合/共有結合により例外的に耐食性がある理由、そして化学物質や高温に対する安定性を提供する理由をご覧ください。

セラミックスが他の材料に比べて優れている点は何ですか?極限条件下での比類なき性能を引き出す

セラミックスが、極度の硬度、高温安定性、耐薬品性によって優れている理由をご覧ください。これにより、過酷な産業用途や実験室用途に最適です。

セラミックスの欠点とは?脆性、コスト、設計上の課題を理解する

セラミックスの主な欠点、すなわち固有の脆性、高い製造コスト、工学用途における熱衝撃への感度について探ります。

セラミックスは耐久性がありますか?用途に合わせてその強度と脆性を解き明かす

セラミックスは熱、摩耗、腐食に対して非常に高い耐久性を持ちますが、脆性があります。最適な性能を得るために、その強みをニーズに合わせる方法を学びましょう。

セラミックは壊れやすいのか、壊れにくいのか?セラミックスの強度と脆性(ぜいせい)の理解

セラミックスがいかに極度の硬度と耐熱性を持っていても、脆性(ぜいせい)のためにすべて壊れやすい理由を発見してください。硬度と靭性(じんせい)の違いを学びましょう。

セラミックスとは何か、その用途は?陶芸から宇宙船まで、素材の可能性を解き放つ

極度の耐熱性から生体インプラント、エレクトロニクスに至るまで、セラミック材料の特性、種類、多様な用途を探る。

セラミック材料の7つの分類とは何ですか?適切な材料を選択するためのガイド

伝統的な粘土から先進的な生体セラミックスまで、7つの主要なセラミック分類と、産業および実験室用途におけるそれらのユニークな特性を探ります。

陶器のスタイルの種類は?土器、炻器、磁器、ボーンチャイナのガイド

陶磁器の4つの主要なタイプ、すなわち土器、炻器、磁器、ボーンチャイナを発見してください。それぞれの特性、用途、そしてプロジェクトに最適なものを選ぶ方法を学びましょう。

セラミックは良い素材ですか?その極限の強度とトレードオフに関するガイド

工学用途におけるセラミック材料の長所と短所を、その極限の硬度や熱安定性から固有の脆性まで探ります。

高温腐食実験で高アルミナ支持ラックと補助管を使用する必要があるのはなぜですか?

化学的安定性と装置の安全性を確保するために、高純度アルミナ製サポートラックとチューブが腐食研究に不可欠である理由をご覧ください。

炉内で高温に耐えるために使用されるものは何ですか?極限の熱に耐える主要な材料

炉のライニング、チューブ、発熱体に使用され、極端な温度に耐える高純度アルミナ繊維などの主要な材料を発見してください。

クレビス腐食試験における鋸歯状Ptfeガスケットの機械的機能とは?材料シミュレーションにおける精度

鋸歯状PTFEガスケットが、幾何学的に一定のマイクロクレビスを生成して合金の耐性を試験し、静止した接合部の条件をシミュレートする方法をご覧ください。

アルミナチューブの最高使用温度は?高純度でその真価を引き出す

アルミナチューブの最高使用温度(最大1800℃)を決定する主要因、特に純度に焦点を当て、高温用途におけるその可能性を発見してください。

Ccpnにおいて、アルミナ絶縁ディスクがサンプルサポートとして使用されるのはなぜですか?アーク放電がなく、均一なプラズマ窒化を保証

CCPNにおいて、アーク放電を排除し、サンプルを絶縁し、高品質な窒素拡散層の形成を保証するために、アルミナディスクが不可欠である理由を学びましょう。

なぜ、熱分解腐食試験には不活性な石英ガラス管が選ばれるのですか? データ整合性と熱安定性を確保する

塩化水素(HCl)や硫化水素(H2S)を伴う高温(最大680℃)での腐食試験において、石英ガラス管が理想的な反応チャンバーである理由をご覧ください。