あなたの研究室に高品質の機器と材料を提供する、信頼できる世界規模のサプライヤー!
について
ブログ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
製品
サンプルの準備
静水圧プレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
ガラス素材
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
Low Temperature Freezer
知識
会社
私たちについて
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
サービスサポート
お問い合わせ
メニュー
メニューを閉じる
サンプルの準備
静水圧プレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
ガラス素材
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
Low Temperature Freezer
知識
ブログ
について
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
知識
蒸留の欠点とは?効率、コスト、スケーラビリティにおける主な限界
溶媒の損失、熱劣化、高コスト、工業用途における拡張性の課題など、蒸留の主な欠点を探る。
化学産業で使用される蒸発器の種類とは?効率的なソリューションのための主要な洞察
化学産業で使用されるエバポレーターの種類、用途、最適な性能を発揮するための選択に影響する要因について説明します。
ラボ用ジョークラッシャーとは?サンプルの前処理と分析に不可欠なツール
ラボ用ジョークラッシャーがどのように大きな試料を均一なサイズに粉砕し、正確な試料調製と分析を行うかをご覧ください。
ラボ用ジョークラッシャーとは?研究室での効率的な材料粉砕に欠かせない
ラボ用ジョークラッシャーがどのように鉱石、岩石、ガラス、瓦礫などを精密な分析や研究のために扱いやすい大きさに粉砕するのかをご覧ください。
ラボ用粉砕機とは?正確な試料調製に不可欠なツール
科学研究における効率的なサンプル前処理のために、ラボ用粉砕機の種類、動作原理、主な特徴についてご紹介します。
対象物を粉砕する正しいツールを選ぶには?あなたのニーズに最適なソリューションを見つける
ボールミル、ハンマーミル、ジョークラッシャー、極低温粉砕機、高圧ホモジナイザーなど、材料の種類、粒度、規模に応じた最適な粉砕ツールの選択方法をご紹介します。
粉砕機とボールミルの違いは?材料粉砕のための重要な洞察
最適な粉砕ソリューションのために、設計、動作原理、用途など、粉砕機とボールミルの違いを学びましょう。
重量粉砕用の粉砕機を選ぶ場合、どのタイプが最適でしょうか?
材料の特性、粒度、処理能力、アプリケーションの要件に基づいて、重量粉砕に適した粉砕機を選択する方法を学びます。
ラボ用グラインダーの種類とは?試料に最適なグラインダーを探す
正確で効率的なサンプル前処理を実現するラボ用グラインダーの種類、用途、利点をご覧ください。
ラボ用粉砕機とは?材料の粉砕と分析に不可欠なツール
医薬品、食品、建築などの産業で、ラボ用粉砕機がどのように固形物を微粉末にし、精密な分析を行っているかをご覧ください。
ボールミルと粉砕ボールの違いとは?粉砕プロセスの最適化
ボールミルと粉砕ボールの主な違いと、効率的な材料処理のための適切な機器とメディアの選び方についてご紹介します。
遊星ミルとボールミル:ニーズに合った粉砕機は?
設計、効率、用途、コストなど、遊星ミルとボールミルの主な違いをご覧ください。お客様のニーズに合った粉砕機をお選びください。
ボールミルにおけるボールサイズの役割とは?粉砕効率と出力の最適化
ボールサイズがボールミルの粉砕効率、エネルギー消費、最終製品の品質にどのような影響を与えるかをご覧ください。今すぐプロセスを最適化しましょう!
ボールミルの能力はどのように計算されますか?キーファクターと最適化戦略
ボールミル容量の計算方法を学び、主要な影響因子を理解し、粉砕効率向上のための最適化戦略を見出すことができます。
ラボミルとは?正確な試料調製に不可欠なツール
製薬、農業、建設などの業界において、ラボ用ミルがどのように正確な試料調製を実現しているかをご覧ください。
ボールミルとペブルミルの違いは?ニーズに合った粉砕機を選ぶ
粉砕媒体、コンタミネーションの懸念、効率、用途など、ボールミルとペブルミルの主な違いをご覧ください。
ボールミルとアトライターミルの違いは?粉砕効率に関する重要な洞察
ボールミルとアトライタミルの設計、運転、用途を検討し、お客様のニーズに合った粉砕ソリューションをお選びください。
ボールミル方式の欠点は?コスト高、騒音、汎用性の低さ
高いエネルギー消費、装置の摩耗、騒音公害、限られた材料処理能力など、ボールミル法の主な欠点を発見してください。
ボールミルとロッドミルの違いとは?正しい粉砕機の選択
粉砕媒体、粒度、用途など、ボールミルとロッドミルの主な違いをご覧ください。お客様のニーズに合った機器をお選びください。
ボールミルにはどのような種類がありますか?お客様のニーズに合った粉砕ソリューションを見つける
ボールミルの主な種類(遊星、ミキサー、振動、水平ローリング)とその用途、能力、作動原理をご覧ください。
ボールミルの欠点とは?効率とコストに影響する主な欠点
ボールミルの主な欠点として、処理速度が遅い、エネルギー使用量が多い、摩耗や損傷、騒音、材料の制限などが挙げられます。
ボールミルとタンブリングミルの違いは何ですか?最適な粉砕ソリューションを見つける
ボールミルとタンブリングミルの主な違いについて、粉砕媒体、効率、最適な粒度分布のための用途などをご紹介します。
ボールミルの運転時間は?粉砕時間を最適化して効率を最大化
粒子径から回転速度まで、ボールミルの粉砕時間に影響を与える要因を発見し、粉砕時間を効率的に最適化する方法を学びます。
ローラーミルとは?農業、鉱業、製造業のための効率的な粉砕を解き放つ
ローラミルが農業、鉱業、製造業でどのように効率的で精密な粉砕を行っているかをご覧ください。ローラーミルの利点と用途をご覧ください。
ラボ用ボールミルとは?精密研削と材料加工に不可欠なツール
実験室用ボールミルの仕組み、主な特徴、科学研究や工業プロセスにおける用途をご覧ください。
ラボワークに最適な粉砕ツールとは?ボールミル、スイングミル、ジョークラッシャーの説明
ボールミル、スイングミル、ジョークラッシャーなど、ラボに最適な粉砕機をご紹介します。正確な試料調製のための用途、メカニズム、利点をご覧ください。
ラボ用グラインダーとは?正確な試料作製に不可欠なツール
正確な化学分析と物理分析のために、ラボ用グラインダーがどのようにサンプルの均一性と効率性を確保しているかをご覧ください。
ラボ用ミルの種類とは?試料前処理に最適な粉砕機を探す
ラボ用粉砕機の種類や用途、研究・試験要件に適した粉砕機の選び方をご紹介します。
ラボ用ミキシングミルのサイズは?コンパクト設計でスペースを有効活用
スペース効率と精度のために設計された6 "と8 "モデルを含むラボ用ミキシングミルのコンパクトなサイズと高度な機能をご覧ください。
コロイドミルとは?粒子径の縮小と均質化に不可欠
効率的な粒子径の縮小、分散、均質化により、コロイドミルが医薬品製造にどのような革命をもたらすかをご覧ください。
ボールミルとコロイドミルの違いとは?粉砕ニーズに対する重要な洞察
ボールミルとコロイドミルの主な違いについて、そのメカニズム、用途、材料の適合性などをご紹介します。
ホモジナイザーとコロイドミルの違いは?液体処理に関する主な洞察
ホモジナイザーとコロイドミルの主な違い:液体処理のメカニズム、用途、結果についてご紹介します。
コロイドミルとは?粒子径の縮小と乳化のための究極の機械
コロイドミルの仕組み、主な用途、そして医薬品、食品、化粧品などの産業でコロイドミルが不可欠な理由をご覧ください。
試験ふるいのサイズと種類は?正確な粒度分布測定ガイド
研究室や産業界で精密な粒度分析を行うための試験ふるいのサイズ、種類、業界標準についてご紹介します。
ふるいとは?粒度分析と分離に不可欠なツール
建設、食品、鉱業などの業界における粒度分析、分離、サンプル前処理のための実験室用ふるいの用途をご覧ください。
ふるい試験とは?粒度分析完全ガイド
ふるい分け試験について、その用途、利点、食品、医薬品、鉱業などの産業における品質管理についてご紹介します。
実験用ふるいとは?粒度分析と品質管理に欠かせないツール
建築、食品検査、土壌分析など、精密な粒度分布測定に使用されるふるいの用途、種類、アプリケーションをご覧ください。
ふるい振とう機の運転時間は?粒子分離プロセスの最適化
正確な粒子分離のためのふるい振とう機の運転時間についてご紹介します。ふるい振とう機の運転時間には、材料、メッシュサイズ、規格などの要素が影響します。
振動ふるいとは?材料分離の効率と精度を高める
振動ふるいは、食品、医薬品、鉱業などの産業でどのように材料を分離、分類、ろ過しているかをご覧ください。その利点と用途をご覧ください。
ふるい振とう機とはラボでの粒度分布測定を効率化
ふるい振とう機で粒度分析を自動化し、品質管理や研究の効率性、正確性、再現性を確保する方法をご覧ください。
ふるいとは?正確な粒度分布測定に不可欠なツール
実験用ふるいについて、その種類、用途、品質管理や研究のための正確な粒度分析を保証する方法についてご紹介します。
試験ふるいの精度はどのように決定されますか?信頼性の高い粒度分布測定
統計的予測、国際規格、正確な結果を得るための主な影響因子を用いて、試験ふるいの精度がどのように決定されるかを学びます。
試験ふるいのAstm規格とは?正確な粒度分布測定
正確な粒度分析のためのメッシュサイズ、認証、校正など、試験ふるいのASTM E11規格についてご覧ください。
試験ふるいとは?業界を超えた粒度分析に不可欠なツール
試験ふるいの仕組み、食品、医薬品、農業、鉱業における用途、品質管理における利点についてご紹介します。
試験ふるいの種類とは?正確な粒度分布測定に適したふるいを探す
乾式、湿式、ワイヤーブレード、メタルパンチング、電鋳など、さまざまな産業分野で精密な粒度分布測定が可能な試験ふるいをご紹介します。
ふるいとは?粒度分析に欠かせないツール
実験室用ふるいがどのように粒子をサイズ別に分類するのか、その用途と食品、製薬、鉱業などの産業における利点についてご覧ください。
ふるい振とう機のデメリットとは?主な制限事項の説明
微粒子の問題、粒子形状の仮定、メンテナンスの課題など、ふるい振とう機の限界について学びます。
振動ふるい振とう機とは?粒度分析・分離に欠かせない
振動ふるい振とう機は、粒度別に粒子を分離し、ウェット/ドライサンプルを処理し、業界全体で正確な品質管理を保証する方法をご覧ください。
ふるい振とう機とは?粒子径分析の精度を高める
ふるい振とう機は、製薬、建設、食品などの産業において、正確性、効率性、汎用性を保証し、粒度分析を自動化します。
試験室におけるふるい分けの重要性とは?材料の品質と一貫性の確保
試験室でのふるい分けがどのように粒度分析、品質管理、材料分離を確実にし、業界全体で一貫した結果をもたらすかをご覧ください。
ふるい振とう機とは精密ふるい振とう機
ふるい振とう機の目的、種類、アプリケーションをご覧ください。
食品産業におけるロータリー真空エバポレーターの用途とは?その多彩な用途をご覧ください
ロータリー真空エバポレーターが、風味の抽出、濃縮、溶媒の回収を通じて食品加工をどのように向上させ、持続可能な実践につなげるかをご覧ください。
蒸発器の構成とは?効率的な液体から蒸気への変換のための主要コンポーネント
熱交換器、蒸発部、セパレーターなど、最適な性能を発揮するために不可欠なエバポレーターの構成部品をご紹介します。
ロータリー抽出法とは?カンナビスおよび植物エキスの精度と効率性
ロータリー式抽出法が熱に弱い化合物を保存し、大麻、植物、医薬品に高品質の抽出物を提供する方法をご紹介します。
ロータリーベーンポンプの真空レベルとは?ラボの信頼できる中真空を実現する
ロータリーベーンポンプについて、その真空レベル(5×10^-2mbar)、用途、他の真空ポンプとの比較についてご紹介します。
ラボ用エバポレーターとは?精密試料調製に不可欠なツール
研究室用エバポレーターが、熱、運動、減圧を利用して、研究および産業における効率的な溶媒分離をどのように実現しているかをご覧ください。
ロータリー真空エバポレーターに代わるものは?効率的な溶剤除去ソリューション
フォーリングフィルムエバポレーター、ワイピングフィルムエバポレーター、固相抽出(SPE)など、ロータリー真空エバポレーターに代わるエバポレーターをご紹介します。
ロータリー真空エバポレーターとは?効率的な溶媒蒸発におけるロータリー真空エバポレーターの役割
ロータリー真空エバポレーター(ロトバップ)が、研究室や産業において、どのように溶媒の蒸発、蒸留、精製を促進するかをご覧ください。
溶剤蒸発の仕組み効率的な溶剤除去ガイド
溶媒蒸発の原理、影響を及ぼす主な要因、ラボや産業における効率的な溶媒除去方法について学びます。
ロータリーフラッシュエバポレーターとは?溶剤除去や工業用途に不可欠
医薬品、バイオテクノロジーなどにおけるロータリーフラッシュエバポレーターの用途、利点、アプリケーションをご覧ください。効率とスケーラビリティの向上についてご覧ください。
エバポレーターとは?溶媒の除去とサンプルの濃縮に不可欠
エバポレーター、特にロータリーエバポレーターがラボで溶媒除去、サンプル濃縮などにどのように使用されているかをご紹介します。その用途と利点をご覧ください。
ロータリーフラッシュエバポレーターとは?溶媒除去・分離の万能ツール
ロータリーフラッシュエバポレーターが、製薬、化学、研究所の溶媒除去、乾燥、分離プロセスをどのように向上させるかをご覧ください。
酢酸エチルを蒸発させるには?ラボや産業用の安全で効率的な方法
空気乾燥、穏やかな加熱、または回転蒸発を使用して酢酸エチルを安全に蒸発させる方法を学びます。重要な安全上の注意を守り、プロセスを最適化しましょう。
ロータリー真空エバポレーターとは?ラボの効率的な溶剤除去を発見する
真空、回転、加熱を利用して効率的に溶媒を除去するロータリー真空エバポレーターが、化学、製薬、食品科学のラボにどのように理想的なのかをご覧ください。
デルタ20ルールとは?蒸発システムにおけるエネルギー効率の最適化
デルタ20ルールがどのように蒸発・凝縮システムのエネルギー効率を最適化し、高い性能と省エネを実現するかをご覧ください。
ロータリー真空エバポレーターとは?効率的な溶媒除去に不可欠なラボツール
ロータリー真空エバポレーターの仕組み、構成部品、利点、ラボでの溶媒除去やサンプル濃縮の用途についてご紹介します。
ロータリー真空エバポレーターの仕組み高感度材料の効率的な溶剤除去
ロータリー真空エバポレーターが、熱に敏感な材料に理想的な、減圧下で優しく効率的に溶剤を除去する方法をご覧ください。
亜臨界抽出と超臨界抽出における蒸発の役割とは?
亜臨界抽出法および超臨界抽出法において、蒸発がどのように無溶媒で高品質の抽出物を確保するのかをご覧ください。
ロータリーエバポレーターとは?その機能、用途、利点を知る
ロータリーエバポレーターの仕組み、主な用途、ラボでの効率的な溶媒除去やサンプル前処理の利点についてご紹介します。
真空蒸着とは?効率的な分離・蒸着技術ガイド
真空蒸発の仕組み、廃水処理や薄膜蒸着への応用、工業プロセスにおける利点についてご紹介します。
ロータリーエバポレーションとは?効率的な溶媒分離と精製の手引き
回転蒸発の仕組み、主要な原理、そして穏やかで効率的な溶媒分離のためのラボでのアプリケーションをご覧ください。
ロータリーエバポレーターの仕組みとは?ラボにおける効率的な溶媒除去の手引き
ロータリー・エバポレーターの仕組み、主要部品、熱に弱い材料の溶媒を穏やかに除去する役割をご紹介します。
ロータリーベーンと液体リング真空ポンプの比較:用途に最適なのはどちら?
ロータリーベーン真空ポンプと液体リング真空ポンプを比較して、産業ニーズに最適なソリューションを見つけましょう。設計、用途、メンテナンスについてご覧ください。
ロータリーエバポレーターの使い方は?ラボアプリケーションのための効率的な溶媒分離をマスターする
研究室での正確な溶媒分離と濃縮のためにロータリーエバポレーターを使用するステップバイステップのプロセスを学びます。
ロータリーエバポレーターの主要部品とは?ロータエバポの効率に関する重要なガイド
ロータリーエバポレーターの主要コンポーネントと、ラボアプリケーションの効率的な溶媒除去における各コンポーネントの役割をご紹介します。
Dmso溶媒を蒸発させるには?効果的な方法と留意点
回転蒸発、窒素蒸発、最適な結果を得るための安全上のヒントなど、DMSOを蒸発させるための最適な方法を学ぶ。
ロータリー真空エバポレーターとは?効率的な溶剤除去に欠かせないツール
ロータリー真空エバポレーターの仕組み、主要コンポーネント、利点、製薬や化学などの産業における用途をご覧ください。
ロータリー蒸発における20/40/60ルールとは?ロータバップの性能を最適化する
20/40/60ルールがいかにロタバップの効率を高め、エネルギーの無駄を省き、機器の寿命を延ばすかを学びましょう。ラボのプロフェッショナルに最適です!
ロータリーエバポレーターの最適温度は?効率と安全性の最大化
ロータリーエバポレーターの最適な温度範囲、効率性、安全性、ラボのプロセスに必要な溶媒固有の要件のバランスについてご紹介します。
ロータリーエバポレーターとは?熱に弱い化合物の効率的な溶剤除去
ロータリーエバポレーターの仕組み、構成部品、ラボでの溶媒除去における利点についてご紹介します。熱に弱い化合物に最適です。
ロータリーエバポレーターとは?ラボでの効率的な溶媒除去に不可欠なツール
ロータリーエバポレーター(ロタバップ)がどのように溶媒を効率的に除去し、サンプルの完全性を保ち、有機および製薬ラボで使用されているかをご覧ください。
ロータリーエバポレーターに代わる最良の方法とは?効率的で費用対効果の高い選択肢を探る
落下式フィルムエバポレーター、拭き取り式フィルムエバポレーター、ドライアイスコンデンサーなど、研究室や産業界のニーズに対応する回転式エバポレーターをご紹介します。
ドライ真空ポンプのデメリットとは?考慮すべき主な課題
高いコスト、互換性の制限、操作の複雑さなど、ドライ真空ポンプの欠点を探る。
油回転ベーン真空ポンプの欠点とは?主な欠点の説明
高いコスト、頻繁なメンテナンス、環境への配慮など、オイルシール式ロータリーベーン真空ポンプの主な欠点をご覧ください。
ロータリーベーンポンプとは?精密アプリケーションのための信頼性の高い真空ソリューション
ロータリーベーンポンプのオイルシール設計、凍結乾燥機や質量分析などの用途、利点、メンテナンスの注意点などをご紹介します。
ガラス張りの原子炉はなぜ青いのか?その耐久性を科学する
ガラスライニングのリアクターがなぜ青色なのか、そして酸化コバルトが工業用途においてどのように耐薬品性、耐久性、性能を向上させるのかをご覧ください。
ガラスライニング炉の化学組成は?耐久性と性能のための主要材料
ホウケイ酸ガラス、スチールボディ、耐久性と耐薬品性のためのPTFEコーティングガスケットなど、ガラスライニング反応器の化学組成を探る。
なぜガラスライニングのリアクターが化学プロセスに不可欠なのか?その強度、耐久性、多用途性をご覧ください。
耐食性、耐久性に優れ、要求の厳しい業界で高い効率を発揮するグラスライニングリアクターが、化学プロセスに理想的な理由をご覧ください。
ガラスリアクターの種類とは?ラボのニーズに最適なソリューションを見つける
単層、二層、三層、特殊リアクターなど、さまざまなタイプのガラス製リアクターと、ラボでのその用途を探る。
グラスライニングリアクターの種類とは?用途に合ったリアクターを探す
化学・製薬プロセスにおけるグラスライニングリアクターの主な種類、用途、利点、限界についてご紹介します。
グラスライニングリアクターの利点とは?腐食性と高純度プロセスに最適
耐食性、高純度、精密な温度制御など、要求の厳しい化学プロセスにおけるグラスライニングリアクターの利点をご覧ください。
原子炉の運転圧力とは?反応効率と安全性の最適化
リアクターの運転圧力が低真空から高圧までどのように変化するか、また反応の種類と効率に適した圧力をどのように選択するかを学びます。
グラスライニングリアクターとは?耐食性と化学的純度に不可欠なもの
製薬、化学、バイオテクノロジーなどの産業におけるガラスラインリアクターの用途、種類、利点をご覧ください。
グラスライニングリアクターとは?高耐食性・高純度化のための必須設備
バイオ医薬品やファインケミカルなどの産業において、ガラスライニングのリアクターがどのように耐食性、耐熱衝撃性、純度を確保しているかをご覧ください。
圧力リアクターとは?研究室および産業用の高圧反応の制御
圧力リアクターがどのように化学反応の精密な制御を可能にし、プロセスを加速させ、研究室や産業における安全性を確保するかをご覧ください。
原子炉が高圧になる原因は?主な要因と安全の秘訣を解説
加熱、化学反応、攪拌、手動加圧など、反応器内で高圧が発生する主な原因と、安全に関する重要なヒントについて学びます。
原子炉の圧力を上げるには?方法、安全性、ベストプラクティスを探る
加熱、攪拌、手動加圧、反応誘発法を用いて反応器内の圧力を安全に上昇させる方法を学ぶ。最適な性能と安全性を確保する。
グラスライニングリアクター(Glr)とステンレススティールリアクター(Ssr)の違いは何ですか?
材料組成、耐薬品性、機械的強度、用途など、GLRとSSRの主な違いをご覧ください。
高圧リアクターとは?高度な化学プロセスを精密に解き明かす
化学、製薬、材料科学のアプリケーションにおいて、高圧リアクターがいかに反応速度の高速化、正確な制御、安全性を可能にするかをご覧ください。
ステンレス製リアクターの設計圧力に影響を与える要因とは?安全性と性能の確保
ステンレス鋼リアクターの設計圧力は、材料グレード、リアクター設計、規格への準拠によってどのように決定されるかをご覧ください。
« 前へ
次へ »