セラミック焼結プロセスの種類にはどのようなものがありますか?固相焼結、液相焼結、粘性焼結のガイド
固相焼結、液相焼結、粘性焼結の各セラミック焼結プロセスの主な違いと、材料に最適なプロセスの選択方法を学びましょう。
焼結セラミックスの強度は?最大限の密度と耐久性を実現する
焼結がいかにしてセラミック粉末を、気孔率を減らすことで強く高密度な材料に変えるかをご覧ください。最終的な強度を決定する主要な要因を発見しましょう。
熱分解における加熱速度の効果とは?バイオ炭、バイオオイル、または合成ガスの製品収率を制御する
熱分解における加熱速度がどのように製品分布を決定するかを学びましょう:バイオ炭には低速、バイオオイルには高速、合成ガスにはフラッシュ。プロセスをマスターしましょう。
焼結サイクルとは?高密度で強度の高い部品を実現するための熱処理プロセスのガイド
焼結サイクルがいかにして制御された加熱と冷却を用いて粉末粒子を固体で高性能な部品に融合させるかを学びましょう。
利用可能なチューブ炉のモデルとタイプにはどのようなものがありますか? プロセスに最適なモデルを選択する
シングル/マルチゾーン、分割/ソリッド、水平/垂直、ロータリーチューブ炉を検討しましょう。 ラボの熱処理ニーズに最適なものを見つけてください。
熱分解とガス化の違いは何ですか?適切な熱変換プロセスの見極め方
熱分解とガス化の主な違い(酸素の使用、生成物(バイオオイル/炭 vs. 合成ガス)、目標に応じた適切な技術の選択方法)を探ります。
温風炉はどのくらい持ちますか?炉の寿命と効率を最大化する
炉の寿命(15~30年)を決定する主要な要因と、家の安全性と効率を確保するために交換時期を示す兆候について学びましょう。
活性炭再生の温度は何度ですか?再利用のための1000°Fプロセスを解き明かす
1000°F(540°C)での活性炭の熱再生と、吸着能力を回復させるための蒸気再活性化プロセスについて学びましょう。
黒鉛の耐熱安定性はどの程度ですか?適切な環境下での極度の耐熱性の解明
黒鉛の耐熱安定性は、その環境によって異なります。不活性雰囲気下では数千度に耐えることができる一方、700℃を超えると空気中で酸化することを学びましょう。
二ケイ化モリブデンが焼結する温度は何度ですか?最適な性能を実現するための主要な変数を解き明かす
MoSi₂の焼結は1400℃~1700℃の間で発生します。方法、添加剤、粉末サイズが、用途に応じた正確な温度をどのように決定するかを学びましょう。
ロータリーキルンの焼成ゾーンで維持される温度はどのくらいですか?それはすべてあなたの材料次第です
ロータリーキルンの焼成温度(石灰石の場合850°C~950°C)が材料固有である理由を発見してください。品質と効率を最適化する方法を学びましょう。
グラファイトは熱に弱いですか?極限環境下でその可能性を最大限に引き出しましょう。
グラファイトの耐熱性のパラドックスを発見してください:3,600°Cの昇華点と、空気中での450°Cの酸化限界。効果的な使用方法を学びましょう。
バルク炭素窒化物の調製における高温ボックス抵抗炉の機能は何ですか?
触媒作用のためのバルクグラファイト炭素窒化物の合成を目的とした、550℃での熱重合を促進する高温ボックス炉の仕組みを学びましょう。
希土類酸化物変換における高温ボックス炉の機能は何ですか? 化学反応性を高める
高温ボックス炉が精密な熱制御と速度論的制御を通じて希土類酸化物の炭素塩素化をどのように促進するかを学びましょう。
誘導炉の融解温度は何度ですか?優れた金属溶解のための最大2000°Cの精密加熱
誘導炉自体には融点はありません。これは、金属をその融点まで正確に加熱するためのツールであり、均一で効率的な溶解のために最大2000°Cの能力に達します。
焼結プロセスの目的は何ですか?粉末を高機能な固体部品に変える
焼結がどのようにして融点以下の温度で粉末粒子を融合させ、高温金属やセラミックスから高密度で丈夫な部品を製造するかを学びましょう。
ジルコニアはどのように焼結されるのか?高温変態プロセスのガイド
ジルコニア焼結の3つの重要な段階(加熱、保持、冷却)と、それらがどのようにして高密度で高強度のセラミック材料を生み出すかを学びましょう。
最高温度を達成できる炉は何ですか?誘導炉が1800℃超でリード
どの炉タイプが最高温度を達成するかを発見しましょう。誘導炉は1800℃を超えますが、マッフル炉や燃焼炉は他のニーズに対応します。
焼結プロセスとは?粉末ベース製造のガイド
生形から固体部品までの焼結プロセス段階を学びましょう。固相焼結と液相焼結、トレードオフ、SPSなどの高度な方法を理解します。
誘導炉の最高温度は何度ですか?高純度溶解で2000°Cを達成
標準的な1800°Cでの溶解から、超合金用の特殊な2000°C真空システムまで、誘導炉の最高温度をご覧ください。
グラファイト炉の目的は何ですか?高度な材料のために極限温度を達成する
グラファイト炉がどのように高純度グラファイトを使用して、制御された雰囲気下で焼結、黒鉛化、高度な合成のために材料を3000°Cまで加熱するかを学びましょう。
ジルコニアの焼結にはどれくらいの時間がかかりますか?焼結サイクルの最適化ガイド
ジルコニアの焼結時間は2時間から12時間以上と幅広く、材料の種類、炉の技術、求められる特性などの重要な要素について学びましょう。
黒鉛を加熱するとどうなりますか?その高温の可能性を引き出すか、酸化のリスクを負うか
黒鉛は不活性雰囲気下では3650℃で昇華しますが、空気中では600℃を超えると酸化します。環境が熱的限界と用途をどのように決定するかを学びましょう。
チューブ炉による高温処理はバイオ炭-Mofにどのような影響を与えますか?高導電性ナノコンポジットを解き明かす
800℃のチューブ炉炭化が、エネルギー貯蔵用の金属ナノ球体を持つ導電性コンポジットへとバイオ炭-MOFをどのように変換するかを学びましょう。
高温ボックス抵抗炉は、長期間の拡散対熱処理実験をどのように容易にしますか?
200時間にも及ぶ長時間の拡散対実験において、高温ボックス炉が熱安定性と均一性をどのように確保するかをご覧ください。
Csiチューブ炉の設計要件は何ですか?垂直ブリッジマン法をマスターする
高純度ヨウ化セシウム結晶成長における精密な垂直温度勾配と安定した機械的移動がなぜ重要なのかを学びましょう。
3D固体電解質フレームワークの最終的な製造における高温焼結炉の役割は何ですか?
高温焼結炉が固体電解質フレームワークの緻密化、イオン伝導率、機械的強度をどのように促進するかを学びましょう。
Llz-Lgvoにとって、雰囲気焼結炉はどのようなプロセス環境を提供しますか?高純度で高密度の接合を実現する
雰囲気焼結炉がLLZ-LGVO電解質作製のために不活性アルゴン雰囲気と精密な熱制御をどのように提供するかを学びましょう。
硫化物固体電解質の石英管と真空シールを使用する理由は何ですか?純度と化学量論を確保する
酸化と揮発性硫黄の損失を防ぐために、硫化物電解質合成に真空シールされた石英管が不可欠である理由を学びましょう。
高温炉における二段階焼結プロセスの役割は何ですか?高密度マグネシアの習得。
二段階焼結プロセス(軽焼成と重焼成)がいかにして高純度マグネシアで3.4 g/cm³の嵩密度を達成するかを学びましょう。
硫酸ジルコニア触媒の構造安定性に高温焼成炉はどのように貢献しますか?
高温焼成炉が相工学、精密な昇温速度、熱制御を通じて硫酸ジルコニアを安定化させる方法を学びましょう。
鉄-クロム合金に高温焼鈍炉を使用する目的は何ですか?データの精度を確保する
鉄-クロム合金において、マイクロセグリゲーションを除去し、信頼性の高い腐食試験を保証するために高温焼鈍が不可欠である理由を学びましょう。
Lifepo4の焼結を大気管炉または箱型炉で最適化する方法とは?バッテリーカソード性能の最適化
大気炉が酸化を防ぎ、炭素コーティングを可能にして、高性能LiFePO4カソード焼結を実現する方法を学びましょう。
Tio2-Yにはなぜ雰囲気制御付き高温管状炉が必要なのですか?マスター触媒担体還元
導電性、高性能のTiO2-Y担体を作成するために、700℃の管状炉での精密な雰囲気制御とアニーリングがなぜ不可欠なのかを学びましょう。
Ft-Irと連携した実験室用高温加熱装置は、潤滑油の酸化防止剤をどのように評価しますか?専門家による分析
高温加熱とFT-IRモニタリングが、カルボニルピークと酸化劣化を追跡することで潤滑油の安定性をどのように評価するかを学びましょう。
高温焼結炉に一般的に必要とされる温度範囲は? 1100℃~1500℃の卓越性を達成
1100℃~1500℃で動作する焼結炉でMAX相合成をマスターしましょう。高度なMXene製造のために高純度で高密なセラミックスを確保してください。
9Cr-1Mo鋼の正規化における高温ボックス炉の役割は何ですか?精密な微細構造制御を実現する
高温ボックス炉が9Cr-1Mo鋼の均質性、炭化物の溶解、およびマルテンサイトの均一性をどのように確保するかを、精密な熱制御を通じて学びましょう。
Nbtivzr合金の評価におけるマッフル炉の主な機能は何ですか?高温原子力耐久性試験
マッフル炉が極端な原子力環境をシミュレートし、NbTiVZr合金の酸化、熱膨張、長期安定性をどのようにテストするかを学びましょう。
温度制御熱処理炉は、硬度と靭性のバランスをどのように取りますか? 材料の卓越性を実現
熱処理炉での精密な焼き戻しが、応力を緩和し、微細構造を変化させることで、硬度と靭性のバランスを取る方法を学びましょう。
Plcベースのファジィ適応Pidコントローラーは、加熱プロセスにどのような利点をもたらしますか?真空蒸留の安定性を最適化する
PLCベースのファジィ適応PIDコントローラーが、真空蒸留における熱慣性とオーバーシュートを排除し、精密な加熱制御を実現する方法を学びましょう。
実験室用高温炉は、磁性ハイパー架橋ポリスチレン(Hps)触媒の合成に磁性ナノ粒子を組み込むためにどのように利用されますか?
高温炉がいかにしてin situ熱分解を促進し、磁性ナノ粒子をHPS触媒構造に組み込むかを学びましょう。
ナノパッケージング粒子の大量熱分解に必要な高温炉装置の機能は何ですか?
レーザー加熱、プラズマ源、空気段階収集を含む、大規模ナノ粒子熱分解に不可欠な炉の機能について学びましょう。
ニオブ担持触媒は、管型雰囲気炉によってどのように最適化されるのですか?フィッシャートロプシュ合成の卓越性を実現するSmsiを解き明かす
管型雰囲気炉が、SMSI効果、精密な還元、およびC5+選択性の向上を通じて、フィッシャートロプシュ触媒をどのように強化するかを学びましょう。
高温乾燥および焼成装置は、アパタイトネフェリン廃棄物の特性にどのような影響を与えますか?
焼成装置の温度制御が、アパタイトネフェリン廃棄物を反応性フィルターまたは安定した建材にどのように変換するかをご覧ください。
安定化繊維にチューブ炭化炉が提供する条件は何ですか?炭化プロセスをマスターする
高純度窒素、精密な5°C/分の昇温速度、1200°Cの温度が安定化繊維を高強度炭素繊維に変換する方法を学びましょう。
Prox活性試験における石英反応管の機能は何ですか?高純度触媒性能の確保
Pt-Co触媒のPROX試験に石英反応管が不可欠である理由、熱安定性を提供し、データ干渉を排除する方法を学びましょう。
誘導炉の利点は何ですか?クリーン、高速、精密な金属溶解を実現
誘導炉の主な利点をご覧ください:優れた温度制御、高いエネルギー効率、材料損失の削減、より安全な作業環境。
粉末冶金における焼結プロセスの種類は何ですか?部品に最適な方法を選択する
従来の焼結、液相焼結、高温焼結、DMLSなど、粉末冶金における主要な焼結プロセスを探り、部品の密度と性能を最適化しましょう。
グラファイトの工業用途とは?冶金から半導体まで
耐熱性と導電性を活かしたグラファイトの主要な工業用途を、冶金、EDM、半導体、原子力分野で探ります。
なぜ黒鉛は高い熱伝導率を持つのか?そのユニークな構造で優れた熱管理を実現
黒鉛の層状原子構造が、いかにして優れた熱伝導性を可能にし、高温用途で金属を凌駕するのかを発見してください。
電着と真空ろう付けの違いは何ですか?ツールに最適な接合方法を見つけましょう
電着は費用対効果の高いツールに機械的接合を提供しますが、真空ろう付けは高性能用途に優れた冶金学的接合を提供します。
黒鉛の融点とその理由とは?極限の耐熱性を解き明かす
黒鉛が融解せずに3,650°Cで昇華する理由と、その共有結合が実験室用途で比類のない熱安定性をどのように生み出すかを発見してください。
灰分試験は何度で行われますか?正確な材料分析のためのガイド
食品(550°C)、石炭(750°C)、プラスチック(500-900°C)の正確な灰化温度を発見し、正確で再現性のある結果を保証します。
湿式灰化法を使用する利点と欠点は何ですか?サンプル調製におけるスピード対安全性
湿式灰化法のトレードオフを探る:迅速な分解と揮発性元素の保持 対 汚染リスクと酸取り扱いの危険性(ラボ分析向け)。
食品サンプルの灰分含有量を決定するにはどうすればよいですか?正確なミネラル分析のための適切な方法を選択する
食品灰分分析の3つの主要な方法(乾式灰化、湿式灰化、低温灰化)を学びます。それぞれの用途とトレードオフを理解しましょう。
焼結は溶接と同じですか?材料の結合と融解における主な違いを解説
材料製造における液化対固相拡散に焦点を当て、焼結と溶接の重要な違いを学びましょう。
焼結プロセスは危険ですか?主なリスクと安全対策の特定
有毒ガスや微粒子リスクを含む焼結の危険性を理解し、実験室で安全に管理する方法を学びましょう。
焼結プロセスに伴うリスクとは? 失敗を防ぎ、品質を最大化するための主要戦略
材料の不均一性、構造的弱さ、高いセットアップコストなど、焼結における重要なリスクと、それらを軽減する方法を学びましょう。
実験後、製品と廃液はどのように取り扱うべきですか?実験室の安全とコンプライアンスを確保する
段階的な分解から環境に配慮した廃棄物処理まで、実験後の安全な取り扱いに関する必須ステップを学びましょう。
アルミニウムコアシェル粒子の熱処理において、工業用高温マッフル炉はどのような役割を果たしますか?
高温マッフル炉が相転移とシェルクラッキングを通じてアルミニウムコアシェル粒子を活性化し、水素製造を可能にする方法をご覧ください。
Lzp相制御に高温マッフル炉が不可欠な理由とは?高伝導性電解質を安定化する
高温マッフル炉が1100℃での精密焼結と急冷を通じてLZP電解質の菱面体晶相を安定化する方法を学びましょう。
製造業における焼結プロセスの重要性とは?精度と材料耐久性の向上
製造業における焼結の重要な役割を探る:硬度の向上、複雑な形状の実現、生産コストの効果的な削減。
焼結によって何が減少しますか?気孔率、表面積、および材料特性の習得
焼結は主に気孔率と表面積を減少させ、粉末材料の密度、強度、導電性を向上させます。
黒鉛の熱的限界は?研究室で極限の熱性能を引き出す
黒鉛の熱的限界が空気中では500℃から真空中で3300℃までどのように変化するか、また、それを研究室のプロセスで正しく適用する方法を学びましょう。
なぜグラファイトは融解しにくいのか?その秘密は原子構造にあり
グラファイトが強い共有結合によって極めて高い融点を持つにもかかわらず、なぜ柔らかく潤滑剤として機能するのかを発見してください。
石英管を曲げるにはどうすればよいですか?精密な結果を得るための高温プロセスを習得する
必要な1600℃での加熱、専門的な機器、および重要な徐冷(アニーリング)工程を含む、石英管を曲げるための専門的なプロセスを学びましょう。
活性炭を再活性化するにはどうすればよいですか?吸着能力を回復し、コストを節約する
使用済み活性炭を再活性化し、その多孔性を回復し、コストを削減するための熱処理プロセスを学びましょう。手順、制限、および主な利点を理解してください。
なぜ黒鉛は熱に耐えられるのか?実験室での極限の熱安定性を解き明かす
黒鉛の原子構造が、いかにして昇華点3,650℃という驚異的な耐熱性を生み出し、高温の実験室用途に理想的であるかを発見してください。
マッフル炉はバイオマス熱分解分析にどのように利用されますか?主要な原料特性評価と組成分析
マッフル炉がバイオマスの組成分析を可能にし、灰分と揮発分を定量化して熱分解収率とエネルギーバランスを予測する方法を学びましょう。
Ods 304L鋼にチューブ焼結炉が提供する必須条件は何ですか?精密な熱制御をマスターする
チューブ焼結炉がODS 304Lステンレス鋼に必要な重要な1150°Cの熱エネルギーと不活性アルゴン雰囲気を提供する方法を学びましょう。
W-Sic薄膜に石英管を用いた雰囲気制御炉が使用されるのはなぜですか?相転移の最適化
石英管を備えた雰囲気制御炉が、W-SiC薄膜のアニーリングにおける酸化を防ぎ、精密な相転移を可能にする方法を学びましょう。
予備酸化中に空気と水蒸気が導入されるのはなぜですか?コークス化実験のための表面不動態化をマスターする
空気と水蒸気が保護酸化膜(1023K-1173K)を生成し、合金表面を不動態化して実験室での触媒コークス化を低減する方法を学びましょう。
高温箱型电阻炉如何调控T91和Ht9钢的显微组织?精确的热控制
了解高温箱型炉如何通过精确的正火和回火循环来调控T91和HT9钢的显微组织,以用于研究。
熱処理(焼結)工程の目的は何ですか? 高耐久性電気活性膜のエンジニアリング
熱処理(焼結)がバインダーを除去し、粒子を融合させて、安定した単体自己支持膜を作成する方法を学びましょう。
Nasiconの後熱アニーリングに高温焼結炉を使用する目的は何ですか? イオン伝導率の向上
高温焼結炉が、コールドシンタリングされたNASICONを98%以上の高密度に焼結し、不純物を除去してイオン伝導率を最大化する方法を学びましょう。
Mecカーボンブラシの準備における高温炉の重要な機能は何ですか?バイオアノード表面の最適化
高温炉が450℃でカーボンブラシの表面改質を可能にし、MECシステム用の高性能アノードを作成する方法を学びましょう。
精密熱処理炉はどのようにして接合強度を確保するのか? Al-Mg-Sc溶接の完全性を最適化する
精密炉がAl3Sc析出と人工時効を利用してアルミニウム-マグネシウム-スカンジウム合金溶接の強度を最大化する方法を学びましょう。
Al-Ni-Fe 用に高温マッフル炉とアルミナコーティングされたSicるつぼを使用する理由?合金純度の確保
Al-Ni-Fe合金の溶解において、汚染を防ぎ均一性を確保するためにマッフル炉とアルミナコーティングされたSiCるつぼが不可欠である理由をご覧ください。
Cr系合金にとって超高温誘導炉が不可欠な理由とは?2000℃以上の合成をマスターする
誘導炉とTGAシステムが、クロム系合金開発における極端な融点と酸化をどのように克服するかをご覧ください。
鉄置換マンガン酸化物粉末の製造において、高温ボックス炉はどのような役割を果たしますか?
900℃のボックス炉が、鉄置換マンガン酸化物合成における相転移と結晶成長をどのように可能にするかをご覧ください。
化学気相輸送(Cvt)法を用いてZns結晶原料を調製する上で、チューブ昇華炉の重要な役割は何ですか?
チューブ昇華炉が化学気相輸送(CVT)と精密な熱制御を使用してZnS結晶成長用の亜鉛と硫黄を精製する方法を学びましょう。
Li2Ohbr粉末合成における加熱炉の役割とは?効率的なワンステップ熱合成を実現する
マッフル炉とチューブ炉が、精製不要で生産を効率化する300℃でのLi2OHBrのワンステップ合成をどのように可能にするかをご覧ください。
マッフル炉はLatpセラミックスの後熱処理にどのように貢献しますか?微細構造の修復を最適化する
マッフル炉が600°C〜800°Cの精密な熱処理を通じてLATPセラミックスを最適化し、導電率と粒界修復を向上させる方法を学びましょう。
304ステンレス鋼の処理における高真空炉または雰囲気保護炉の役割は何ですか?
雰囲気炉が304ステンレス鋼の焼鈍および時効硬化中に酸化を防ぎ、微細構造の完全性を確保する方法を学びましょう。
ランタンジルコネートの最終形成において、工業用高温焼結炉はどのような役割を果たしますか?
1000°C~1200°Cの高温焼結炉が、ランタンジルコネートコーティングの相転移と緻密化をどのように促進するかをご覧ください。
Mpcf/Al複合材料の試験において、プログラム温度熱処理炉は何のために使用されますか?宇宙試験
プログラム温度熱処理炉が、熱安定性と残留応力解放のためにMPCF/Al複合材料を試験する宇宙条件をどのようにシミュレートするかを学びましょう。
機械的推進システムはどのようにしてHea-Npの品質を保証しますか?精密制御による高速流動層熱分解(Fast Moving Bed Pyrolysis)をマスターする
チューブ炉における高速機械的推進が、急速加熱と共核生成を通じて高エントロピー合金ナノ粒子の品質をどのように保証するかを学びましょう。
太陽熱木材処理におけるボックス抵抗炉の役割とは?高効率な光吸収を実現する
ボックス抵抗炉が、表面炭化を通じて木材基材を最適化し、優れた太陽熱水蒸発を実現する方法を学びましょう。
マッフル炉は密閉されたるつぼと組み合わせて使用する必要があるのはなぜですか?バイオマス揮発分分析の正確な解説
燃焼を防ぎ、正確な熱分解データを確保するために、バイオマス揮発分測定に密閉るつぼが不可欠である理由を学びましょう。
シリカ添加硫酸カルシウム生体セラミックスの調製において、高温焼結炉はどのような役割を果たしますか?
高温焼結がシリカ添加硫酸カルシウム無水物生体セラミックスの相変態と機械的強度をどのように促進するかを学びましょう。
Latp製造における高温焼結炉の役割は何ですか?密度とイオン伝導率をマスターする
マッフル炉やチューブ炉のような高温焼結炉が、バッテリー性能を最大限に引き出すためにLATP固体電解質をどのように高密度化するかを学びましょう。
拡散反射法を用いたサンプルの調製と測定は、通常どのように行われますか?実験室のIr分光法を最適化する
希釈、KBrマトリックス、データ精度に焦点を当て、拡散反射用サンプルの調製と測定のステップバイステッププロセスを学びます。
セラミック製造における焼結プロセスの機能は何ですか?高密度化と構造的完全性の達成
焼結が、原子拡散、緻密化、気孔除去を通じてセラミック粉末を耐久性のある部品にどのように変換するかを理解しましょう。
焼成と焼結のプロセスにはどのような共通点がありますか?主な共通の熱原理を解説
融点以下の熱処理と湿式製錬法に焦点を当て、焼成と焼結の基本的な類似点について学びましょう。
高温炉はハロゲン化物固体電解質材料の熱処理をどのように促進しますか?
高温炉がハロゲン化物固体電解質の合成に必要な活性化エネルギーと精密制御をどのように提供するかを学びましょう。
石英管と真空シールシステムの機能とは?高純度固溶体合成を確実にしましょう
真空シールされた石英管が、高温合成中に空気感受性のLi-Lu-Zr-Cl固溶体を湿気や酸化からどのように保護するかを学びましょう。
Cvdによるシリカ/Sicナノワイヤの製造における雰囲気制御要件は何ですか? 1100°Cの前駆体管理をマスターする
1100°CでのCVD合成によるシリカ/炭化ケイ素コアシェルナノワイヤの製造における、一酸化炭素と精密なガス流量の重要な役割を学びましょう。
高温炭化・賦活炉は、バイオマス由来活性炭の開発にどのように貢献しますか?
精密な熱分解および物理/化学的活性化プロセスを通じて、高温炉がバイオマスを活性炭に変換する方法を学びましょう。
アルミニウムとアルカリの回収における高温焼成炉の役割は何ですか?本質的な焼成。
高温焼成炉が焼成・炭酸化プロセスにおける効率的なアルミニウムとアルカリの回収のための相変態をどのように可能にするかを学びましょう。
Locaに高温炉と蒸気発生器を使用するのはなぜですか? 1373 Kの精度で原子炉事故をシミュレート
LOCAのシミュレーションに高温炉と蒸気発生器が必要な理由、および正確な1373 K試験と酸化速度論解析について学びましょう。