あなたの研究室に高品質の機器と材料を提供する、信頼できる世界規模のサプライヤー!
について
ブログ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
製品
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
会社
私たちについて
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
サービスサポート
お問い合わせ
メニュー
メニューを閉じる
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
ブログ
について
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
よくある質問 -
バッテリーラボ用途向け高純度亜鉛箔
Ppfとコーティングの違いは何ですか?車のためのアーマーとスリックシェル
PPFは飛び石や傷に対する物理的なシールドであるのに対し、セラミックコーティングは光沢と耐薬品性を提供します。主な違いを学びましょう。
ラミネート加工の目的は何ですか?書類を保護し、長期使用のために強化する
ラミネート加工の利点を発見してください:耐久性の向上、環境保護、外観の改善、書類の寿命延長。
板金の利点、欠点、および用途は何ですか?材料選定の究極ガイド
板金の長所、短所、および用途を探ります。その強度対重量比、成形性、費用対効果、および製造上の限界について学びます。
金属コーティングと非金属コーティングの違いは何ですか?犠牲防食とバリア保護のガイド
金属コーティングと非金属コーティングの主な違い、保護メカニズム、用途、そしてニーズに合った適切なコーティングの選び方について学びましょう。
金属の腐食を防ぐ2つの方法とは?バリア保護と犠牲防食を解説
金属の腐食を防ぐための2つの基本的な方法、バリア保護と犠牲防食について学びましょう。それぞれの利点、欠点、最適な用途を理解します。
金属の2つの欠点とは?腐食と重量制限の理解
金属の2つの主な欠点である腐食と高密度について学びましょう。プロジェクトにおけるエンジニアリングと材料選択への影響を探ります。
金属を使用する際の欠点は何ですか?腐食、重量、コストの課題を理解する
腐食、高密度、コスト、導電性の問題など、金属を使用する際の主な欠点を探り、プロジェクトのために十分な情報に基づいた材料選択を行いましょう。
コーティングの3つの種類とは?建築用、工業用、特殊用途のガイド
建築用、工業用、特殊用途という3つの主要なコーティングの種類を発見してください。それぞれの用途、トレードオフ、およびプロジェクトに最適なものを選択する方法を学びましょう。
ナノ材料は人体に潜在的な危険をもたらしますか?リスクの理解と安全な取り扱い
ナノ材料の潜在的な健康被害、その毒性メカニズム、および安全な取り扱いとリスク軽減のための主要な戦略を探ります。
プラスチックリサイクルの障壁とは何か?経済的、材質的、技術的な課題を解説
経済的な不利、材質の複雑さ、インフラの不備に至るまで、プラスチックリサイクルの主な障壁を探り、なぜほとんどのプラスチックがリサイクルされないのかを学びましょう。
温度によって硬度はどのように変化しますか?故障を防ぐための逆相関関係を理解する
温度が上昇すると硬度が低下する理由と、高温用途で強度を維持する材料の選び方を学びましょう。
ニッケルフォームの特性とは?その高性能特性ガイド
ニッケルフォームの主要な特性(高多孔性、導電性、化学的安定性など)を、バッテリーやろ過などの先進的な用途向けに探求します。
カーボンナノチューブは何に使えますか?バッテリーと材料の性能を向上させる
カーボンナノチューブはリチウムイオン電池、ポリマー、複合材料などの性能を向上させます。CNTが導電性、強度、耐久性をどのように付加するかを学びましょう。
ニッケルまたは銅フォームの使用後に従うべき手順は何ですか?信頼性の高い再利用と性能のためのガイド
ニッケルまたは銅フォームの必須な使用後手順(洗浄、性能試験、保管など)を学び、材料の完全性と寿命を確保しましょう。
ニッケルおよび銅フォームの適切な保管条件とは?性能を維持するためのガイド
酸化、汚染、構造的損傷を防ぎ、最大限の寿命と性能を保証するために、ニッケルおよび銅フォームの必須の保管プロトコルを学びましょう。
炉の加熱にはどのような材料が使用されますか?プロセスに合った適切なエレメントを選択してください
MoSi₂、黒鉛、CFC、合金などの最適な炉加熱材料を見つけましょう。温度と雰囲気のニーズに合わせて選択してください。情報に基づいた選択をしてください。
ニッケルフォームは何に使われる?その電気化学的応用ガイド
高多孔性と導電性により、バッテリー、スーパーキャパシタ、触媒におけるニッケルフォームの主要な用途を発見してください。
カーボンナノチューブのエネルギー貯蔵における用途は何ですか?バッテリー性能と耐久性の向上
カーボンナノチューブがリチウムイオンバッテリーの導電性を向上させ、急速充電を可能にし、シリコンアノードのような次世代材料をサポートすることで、どのように性能を高めるかを発見してください。
ナトリウム電池試験における銅箔の役割:クーロン効率と安全性の測定に不可欠
銅箔がナトリウム金属電池試験において、めっき、ストリッピング、デンドライト形成を監視するための不可欠な基材としてどのように機能するかを学びましょう。
最も強い金属フォームとは?複合金属フォームの優れた強度を発見
複合金属フォーム(CMF)について学びましょう。これは、これまでのフォームと比較して強度対密度比が5~6倍も優れた、最も強い金属フォームです。
ニッケルおよび銅フォームを使用する際に、どのような静電気保護対策を講じるべきですか?必須のEsd安全プロトコル
導電性のニッケルおよび銅フォームを取り扱う際の主要なESD安全対策を学び、研究室の敏感な電子部品への損傷を防ぎましょう。
カーボンナノチューブは世界をどう変えるのか?優れた素材でグリーン革命を推進する
カーボンナノチューブがリチウムイオン電池を強化し、より強力な複合材料を生み出し、カーボンブラックよりも優れた性能で持続可能な技術を推進する方法をご覧ください。
焼結に窒化アルミニウム(Aln)箔を使用する理由とは?高純度材料合成のための必須保護
粉末焼結にAlN箔が不可欠である理由を学びましょう。化学的隔離、熱的均一性を提供し、圧力下でのサンプル純度を保護します。
ニッケルフォームの作り方:テンプレートと電気めっきプロセスのガイド
ポリマーテンプレート、電気めっき、焼結を使用してニッケルフォームがどのように作られるかを学びます。高多孔質金属構造の製造プロセスを発見してください。
ニッケルフォームの利点は何ですか?エネルギーと触媒における優れた性能を引き出す
ニッケルフォームの主要な利点、すなわち高い導電性、広大な表面積、そしてバッテリーや触媒などの高度な用途に対応するための強固な強度について解説します。
Znsの熱間プレスに黒鉛箔が使用されるのはなぜですか?純度を高め、金型を保護する
亜鉛化硫化物(ZnS)の熱間プレスにおいて、黒鉛箔が固着防止、汚染遮断、均一な圧力分布の確保に不可欠である理由を学びましょう。
エネルギー分野におけるカーボンナノチューブの応用とは?バッテリー性能とエネルギーインフラの強化
カーボンナノチューブがリチウムイオンバッテリーをどのように改善し、エネルギーインフラを強化し、次世代の太陽光発電やエレクトロニクスを実現して、優れたエネルギーソリューションを提供するかを探ります。
カーボンナノチューブが使用される3つの製品は何ですか?バッテリー、タイヤ、複合材料の強化
リチウムイオン電池、高性能タイヤ、および優れた強度と導電性を持つ先進複合材料におけるカーボンナノチューブの実世界での使用を探る。
カーボンナノチューブの電気的応用とは?バッテリー性能とエレクトロニクスを強化
カーボンナノチューブがリチウムイオンバッテリーをどのように改善し、フレキシブルエレクトロニクスを可能にし、優れた性能を持つ導電性複合材料をどのように生み出すかを探ります。
カーボンナノチューブはバッテリーに使用できますか?導電性ナノチューブでバッテリー性能を向上させる
カーボンナノチューブがリチウムイオンバッテリーをどのように強化し、優れた導電性添加剤としてエネルギー密度、充電速度、寿命を向上させるかを探ります。
銅フォームは安全ですか?その抗菌作用と冷却効果に関する事実を発見してください
銅フォームの安全性について、その抗菌特性、放熱効果、アレルギーに関する考慮事項を含め、情報に基づいた意思決定のために学びましょう。
銅フォームの特性とは?高性能な熱・電気ソリューションを解き放つ
銅フォームの主要な特性を探る:高い熱伝導率/電気伝導率、多孔質構造、強度。ヒートシンク、触媒、ろ過に最適です。
カーボンナノチューブの潜在的な用途は何ですか?バッテリー、複合材料、電子機器の性能向上
リチウムイオン電池、先進複合材料、次世代電子機器におけるカーボンナノチューブの用途を探り、優れた強度と導電性を実現します。
コールドシンタリング金型組立時の消耗品としてのアルミホイルの利用方法とは?工具寿命の最適化
コールドシンタリングにおいて、アルミホイルが重要な分離層として機能し、粉末の付着を防ぎ、精密金型パンチを保護する方法を学びましょう。
電解セルにおけるエージングプロセスの技術的な意義は何ですか?ナノチューブ構造を精密化する
ゼロ電圧エージングプロセスが、化学的溶解を用いて接続されたナノポアを独立した高精度ナノチューブに変換する方法を学びましょう。
Somセルで高純度アルミナ保護スリーブが使用されるのはなぜですか?アノードを過酷な酸化から保護します
高純度アルミナスリーブとスラリーシールがSOM電解セルでの酸化を防ぎ、金属電流コレクタの寿命を延ばす方法をご覧ください。
炭化ケイ素はどのような産業で使用されていますか?半導体、航空宇宙、高温用途への電力供給
極度の硬度と熱安定性により、半導体から航空宇宙、産業用加熱に至るまで、炭化ケイ素(SiC)を利用する重要な産業を探ります。
誘導加熱に最適な材料は何ですか?最大の効率を得るための強磁性金属
鋼のような強磁性金属が誘導加熱に最適である理由を発見してください。透磁率と電気抵抗率がどのように効率を向上させるかを学びましょう。
実験前に電解液の準備として必要なことは何ですか?完璧な電気化学的結果を得るためのガイド
化学物質の選択と純度管理から安全手順まで、電解液調製のための重要なステップを学び、正確で再現性の高い実験を確実にしましょう。
全固体電池の試験におけるステンレス鋼製電池試験モールドの役割とは?すべての関係者にとって不可欠な洞察
ステンレス鋼製電池試験モールドが、界面接続を可能にし、体積膨張を管理し、精密な全固体電池の研究を保証する方法をご覧ください。
C-Llzoの標準化された実験室用圧縮セルモールドはどのような利点をもたらしますか?バッテリーデータの精度を最適化する
標準化されたモールドが、信頼性の高い電気化学データを生成するために、機械的圧力と密閉環境を通じてc-LLZOのテストをどのように強化するかを発見してください。
Rvcシートの適切な保管条件は何ですか?長期的な性能と完全性を確保するために
RVCシートの必須の保管方法を学び、湿気の吸収、汚染、構造的損傷を防ぎ、信頼性の高い実験結果を保証します。
Mecのアノード材料として黒鉛ブラシと炭素フェルトが選ばれる理由は何ですか?バイオ燃料のパフォーマンスを最適化する
MECアノードの業界標準である黒鉛ブラシと炭素フェルトが、バイオフィルム密度と電子伝達効率を最大化する理由をご覧ください。
実験をセットアップするための主要な手順は何ですか?完璧な電気化学測定のためのガイド
電気化学実験をセットアップするための3つの重要なフェーズ(セル組み立て、システムチェック、実行)を学び、データの完全性と安全性を確保しましょう。
実験後の正しいシャットダウン手順は何ですか?安全な停止のためのステップバイステップガイド
電気分解実験における重要なシャットダウン手順を学び、電気的、熱的、化学的危険を軽減し、オペレーターの安全と機器の長寿命を確保します。
カーボンナノチューブはエネルギーを貯蔵できるか?高出力・長寿命のエネルギー貯蔵を実現する
カーボンナノチューブがいかにして優れた導電性、表面積、強度によってスーパーキャパシタとバッテリーを強化し、先進的なエネルギー貯蔵ソリューションを実現するかを探ります。
発熱体に適した材料は?温度と雰囲気に応じた適切な材料を選択する
NiCr合金からグラファイト、MoSi2まで、用途に最適な発熱体材料を見つけましょう。温度と雰囲気が理想的な選択をどのように決定するかを学びます。
高温耐性材料としても使用される材料は何ですか?先進セラミックスと合金を探る
高温用途における先進セラミックス、耐火金属、超合金を比較します。融点、安定性、脆性などの主要な特性を学びましょう。
炉に耐火物が使用されるのはなぜですか?高温性能と安全性を確保するため
炉のライニングに耐火物が不可欠である理由を学びましょう。極限条件下での耐熱性、化学的不活性性、構造的完全性を提供します。
Mosi2(二ケイ化モリブデン)ヒーターエレメントとは?自己修復能力を持つ高温ソリューション
自己修復機能を持つMoSi2ヒーターエレメントを発見しましょう。ラボ用電気炉向けの高温(1900℃)部品です。セラミックス、ガラス、材料科学に最適です。
金属フォームは高価ですか?先進材料の高コストを解き明かす
複雑な製造工程、高価な原材料、限られた生産規模など、金属フォームが高価である理由と、そのユニークな特性が価格を正当化する状況について解説します。
薄膜光学コーティングにはどのような材料が使用されていますか?精密な光制御のための主要材料
反射防止、ミラー、フィルターに使用される薄膜光学コーティングの誘電体酸化物、フッ化物、金属について探ります。
発熱体の製造にはどのような材料が使用されますか?用途に合った適切な合金を選びましょう
温度、コスト、環境のニーズに合わせて、ニクロム、カンタル、炭化ケイ素などの最適な発熱体材料を見つけましょう。
金属フォームを使用する際の欠点は何ですか?専門材料のトレードオフを理解する
金属フォームの主な欠点を探ります。これには、高コスト、低い機械的強度、腐食や目詰まりなどの耐久性のリスクが含まれます。
Mec電極に高純度グラファイト粒を使用する主な目的は何ですか? 生物電気化学活性の向上
高純度グラファイト粒が微生物の付着と電子移動効率を最大化する方法を、微生物電解セル(MEC)で学びましょう。
アディティブ・マニュファクチャリングではどのような種類の材料が使用できますか?ポリマー、金属、複合材料を探る
PLAのような一般的なプラスチックから、高度な金属や複合材料まで、あらゆる種類の3Dプリンティング材料を発見し、プロジェクトに最適な材料を選ぶ方法を学びましょう。
電極材料とは何ですか?用途に最適な導体を選択するためのガイド
白金などの金属や様々な形態の炭素を含む、不活性電極材料と活性電極材料の主な違いを発見し、電気化学プロセスを最適化しましょう。
炭素材料を取り扱う際に、汚染を防ぐためにどのような予防措置を講じるべきですか?材料の完全性を保護する
ラボでの信頼性の高い性能を保証するために、化学的および物理的な汚染を防ぐための炭素材料の取り扱いに関する重要な注意事項を学びましょう。
実験に使用される金および白金シートの純度はどのくらいですか?信頼性の高い結果を得るための99.99%の純度保証
なぜ99.99%純度の金および白金シートが、化学的不活性、安定した性能、および再現性のある実験結果に不可欠なのかを学びましょう。
現在のコレクターとしてチタン(Ti)箔を使用する利点は何ですか?データの精度と安定性を確保する
硫化物系全固体電池にチタン箔が理想的な電流コレクターである理由を発見し、腐食を防ぎ、正確なデータを保証します。
アルミニウムアノードの機能層に金属ニッケル粒子が使用されるのはなぜですか?全固体電池の安定性向上
ニッケル機能層がリチウム流動調整器として機能し、全固体電池研究におけるアノードの故障やストレスを防ぐ方法をご覧ください。
Dlcコーティングの材料とは?炭素、水素、シリコン、金属ドーピングに関するガイド
DLCコーティングの主要材料である炭素、水素、シリコン、金属について学び、それらが硬度、摩擦、熱安定性をどのように決定するかを理解しましょう。
Sicの熱抵抗とは?優れた性能を実現する高い熱伝導率の理解
SiCの熱伝導率(120-490 W/m·K)が、なぜ高出力・高温アプリケーションに理想的なのかを学びましょう。単一の熱抵抗値ではありません。
電子ビーム蒸着の長所と短所は何ですか?要求の厳しい用途向けの高純度膜
高純度薄膜堆積のための電子ビーム蒸着の長所と短所(材料の多様性、コスト、均一性の課題を含む)を探ります。
電子ビーム蒸着ではどのような材料が使用されますか?純金属から高温セラミックスまで
高融点金属、貴金属、誘電体セラミックスなど、幅広い電子ビーム蒸着材料について、高度なコーティング用途向けに探求します。
炭化ケイ素の化学的特性とは?その極めて高い化学的不活性と安定性を探る
炭化ケイ素の化学的特性を探る:卓越した耐酸性、高温酸化挙動、そして要求の厳しい用途におけるプロセス不活性。
半導体製造に最も好まれる材料は何ですか?シリコンの優位性を解説
なぜシリコンが最高の半導体材料なのかを発見してください。コンピューティング、RF、電力アプリケーションにおいて、GaAs、GaN、SiCに対するその利点について学びましょう。
Cvdコーティングにはどのような材料が使用されますか?硬質窒化物、ケイ素化合物、ダイヤモンド膜について
窒化チタン、ケイ素化合物、ダイヤモンド膜など、一般的なCVDコーティング材料と、それらが気体前駆体からどのように合成されるかについて学びましょう。
Pecvdではどのような材料が使用されますか?敏感な基板への低温成膜を可能にする
二酸化ケイ素、窒化ケイ素、DLCコーティングなど、PECVDの主要材料について掘り下げ、低温で高品質な薄膜成膜を実現します。
溶接せずに鋼材を鋼材に接合するにはどうすればよいですか?構造用接着剤と機械的締結具をマスターする
高強度構造用接着剤と機械的締結具を使用して、溶接せずに鋼材を接合する方法を学びましょう。強度、シーリング、および適用方法を比較します。
断熱材として使用されるセラミックスは?熱的または電気的ニーズに合わせた適切な材料の選択
アルミナ、ジルコニア、ステアタイトなどの主要な絶縁セラミックスについて学びましょう。高温または電気用途に最適な材料を選択してください。
炭化ケイ素は水に溶けますか?その比類ない化学的安定性を発見する
炭化ケイ素(SiC)は水に溶けません。その強力な共有結合がなぜ並外れた化学的不活性と熱安定性をもたらすのかを学びましょう。
断熱材の厚さを増すと、熱伝達率は増加しますか?臨界半径の解説
断熱材の厚さが熱伝達にどのように影響するかを学びましょう。臨界半径の概念と、断熱材を増やすことが逆説的に熱損失を増加させる場合について解説します。
耐火材料の利点は何ですか?高温プロセスにおける効率と安全性を確保する
極度の熱安定性、耐食性、産業用途におけるエネルギー効率など、耐火材料の主な利点を発見してください。
貴金属の純度を示すものは何ですか?ホールマークと鑑定マークに関する決定版ガイド
独立した鑑定機関による公式のホールマークが、金、銀、その他の貴金属の純度を保証し、安全な投資を可能にする方法を学びましょう。
炭化ケイ素の耐熱性はどのくらいですか?最大1500°Cの極限的な熱に耐えます
炭化ケイ素は、最大1500°Cまでの優れた耐熱性を備え、優れた熱安定性、低膨張性、化学的不活性性により、要求の厳しい用途に対応します。
触媒試験における精密ピペットとチタン箔の役割とは?正確なローディングと信号の完全性を確保する
精密ピペットとチタン箔が、信頼性の高い電気触媒データのために正確な白金ローディングと耐食性をどのように確保するかを学びましょう。
基板の加熱は、炭化チタン膜の品質にどのように影響しますか? Cvdコーティング性能の最適化
基板加熱が化学反応を促進し、表面拡散を制御し、CVD炭化チタン膜の微細構造を決定する方法を発見してください。
使用後の金またはプラチナシートはどのように取り扱い、保管すべきですか?精密作業のための表面完全性を維持する
金/プラチナシートの傷や化学的汚染を防ぎ、長期的な信頼性を確保するための洗浄、乾燥、保管の重要な手順を学びましょう。
Li@Lpscl0.3F0.7バッテリー用のカスタム圧力試験モールドの目的は何ですか?ピークインターフェースの安定性を確保する
剥離を防ぎ、インピーダンスを低減するために、カスタムセルからの一定のスタック圧がLi@LPSCl0.3F0.7バッテリーにとってなぜ不可欠なのかを学びましょう。
固体電池に70℃のコンディショニング処理が必要なのはなぜですか?信頼性の高い界面接触を確保する
固体リチウム金属電池において、抵抗を低減し剥離を防ぐために70℃の熱コンディショニングが不可欠である理由を学びましょう。
炭化物融解実験における高純度セラミックるつぼの重要性は何ですか?高温精度を確保する
高純度セラミックるつぼとライナーが、極端な温度での炭化物研究において汚染を防ぎ、構造的完全性を維持する方法を学びましょう。
金またはプラチナシートの損傷を防ぐために避けるべき物質は何ですか?貴金属を保護する
金およびプラチナシートが王水、表面汚染、不適切な取り扱いによって損傷するのを防ぎ、その価値と性能を維持する方法を学びましょう。
Cvdプロセスにおける材料廃棄に関する利点は何ですか?ターゲットを絞った堆積による効率の最大化
CVDが熱選択性によって材料廃棄をどのように削減するかを学び、コスト効率の高い生産のためにコーティングが加熱基板でのみ行われることを保証します。
腐食性の電解液を使用する際に取るべき安全対策は何ですか?研究室のための必須の保護
PPE、ドラフトチャンバーの使用、および実験室での事故を防ぐためのハザード制御を含む、腐食性電解液を取り扱うための主要な安全対策を学びましょう。
銅フォームの作り方:多孔質金属構造を作成するためのステップバイステップガイド
銅フォームを作成するためのスペースホルダー焼結法について、粉末混合、圧縮、溶解、焼結の各ステップを含め、制御された多孔性を実現する方法を学びましょう。
全石英電解槽の主な用途は何ですか?高純度および光学分析に不可欠
高純度電気化学分析およびその場分光電気化学における全石英電解槽の主要な用途を発見し、汚染のない結果を保証します。
金および白金シートで利用可能な仕様は何ですか?要求の厳しい用途向けの高純度シート
99.99%純度の金および白金シートの仕様をご覧ください:厚さ0.1~0.5mm、サイズ5x5mm~40x40mm、カスタムオプションおよび表面処理。
高温石英とは?比類のない熱安定性と純度に関するガイド
高温石英(溶融石英/シリカ)の、ほぼゼロの熱膨張率、優れた耐熱衝撃性、および主要な用途について学びましょう。
高温炉の加熱要素にはどのようなものがありますか?炉の雰囲気に応じて適切な要素を選択してください
高温炉の加熱要素ガイド:MoSi2、SiC、グラファイト、および耐火金属。炉の雰囲気と温度要件に基づいて選択してください。
銅からグラフェンを転写する方法:純粋な品質を維持するためのステップバイステップガイド
CVDグラフェンを銅箔からターゲット基板へ移動させるための標準的な湿式転写プロセスを学び、破れ、しわ、汚染を避ける方法を解説します。
Cvdで使用される基板とは?高品質薄膜のための基盤
シリコンウェハから金属箔まで、CVDにおける基板の重要な役割を発見し、材料の選択が膜の品質と応用の成功にどのように影響するかを探ります。
Pecvdに含まれる材料とは?低温コーティングのための主要な薄膜を発見する
低温堆積により、窒化ケイ素、DLC、アモルファスシリコンなどのPECVD材料を感熱性基板上に探求する。
アロイ22腐食試験片を組み立てる際に、セラミック隙間形成体にPtfeテープが貼付されるのはなぜですか?
Alloy 22の腐食試験にPTFEテープが不可欠である理由、機械的適合性と正確な電気化学データの確保について学びましょう。
凍結乾燥はC@Siアノード前駆体をどのように改善しますか?昇華による材料構造の強化
凍結乾燥が昇華によってC@Siアノード前駆体の凝集と構造崩壊を防ぎ、優れたバッテリー材料を実現する方法を学びましょう。
Pecバッテリーにおけるアニオン交換膜の役割とは?安全で高純度な水素製造を実現
PECシステムにおけるアニオン交換膜(AEM)が、イオン伝導とガス分離のバランスをどのように取り、安全性と高純度な水素を確保するかをご覧ください。
アルカリ水電解の研究用電極材料として316Lステンレス鋼を選択する際の主な考慮事項は何ですか?
コストと耐食性のバランスを取りながら、アルカリ水電解研究で316Lステンレス鋼が好まれる基材である理由をご覧ください。
全固体電池におけるリチウム金属アノード界面の研究において、透明なポリカーボネートモールドを使用する目的は何ですか?
透明なポリカーボネート製モールドが、固体電池における圧力誘起ウェット(濡れ)と界面接触の視覚的確認をどのように可能にするかを学びましょう。
Smco磁石回収における銅箔カソードの具体的な用途は何ですか?合金電析結果の最適化
高効率電析プロセスによるCo–Fe–Cu合金のインサイチュ回収に銅箔カソードが不可欠である理由を学びましょう。
希土類鋼の研究において、高純度セラミックるつぼが必要とされるのはなぜですか?正確なデータ結果を保証する
高純度セラミックるつぼが、溶融鋼中の希土類元素の研究に不可欠である理由を学び、汚染やデータエラーを防ぎましょう。
前へ
Page 1
次へ