あなたの研究室に高品質の機器と材料を提供する、信頼できる世界規模のサプライヤー!
について
ブログ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
製品
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
会社
私たちについて
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
サービスサポート
お問い合わせ
メニュー
メニューを閉じる
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
ブログ
について
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
よくある質問 -
Ptfe導電性ガラス基板洗浄ラック
Ppfとコーティングの違いは何ですか?車のためのアーマーとスリックシェル
PPFは飛び石や傷に対する物理的なシールドであるのに対し、セラミックコーティングは光沢と耐薬品性を提供します。主な違いを学びましょう。
Ptfe製洗浄バスケットは、初回使用前にどのように洗浄すべきですか?プロセス完全性のための重要な最初の一歩
製造残留物を取り除き、デリケートな実験プロセスでの汚染を防ぐための、新しいPTFEバスケットの初回使用前洗浄プロトコルについて学びましょう。
Ptfe製洗浄バスケットの最高使用温度は何度ですか?260°Cでの壊滅的な故障を避ける
PTFE製洗浄バスケットの重要な260°Cの限界を知り、変形、性能低下、貴重なラボ部品への損傷を防ぎましょう。
Ptfe製洗浄バスケットを使用する際の洗浄プロセス中に何を監視すべきですか?信頼性の高い結果を確保し、損傷を防ぐために
PTFE製洗浄バスケットの主要な監視手順を学びましょう:損傷の検査、ずれの防止、パラメーターの維持により、安全で効果的な洗浄サイクルを確保します。
コーティングの3つの種類とは?建築用、工業用、特殊用途のガイド
建築用、工業用、特殊用途という3つの主要なコーティングの種類を発見してください。それぞれの用途、トレードオフ、およびプロジェクトに最適なものを選択する方法を学びましょう。
Ptfe洗浄バスケットに推奨されるメンテナンス手順は何ですか?装置の寿命を延ばし、プロセスの純度を確保する
PTFEバスケットのメンテナンスの基本:検査、洗浄、損傷防止を学び、貴重な部品を保護し、洗浄効果を確保する方法。
ディップコーティングの技術とは?均一な膜を形成するための5段階プロセスをマスターする
浸漬から蒸発まで、ディップコーティングの5つの重要な段階と、最適な膜品質を得るための引き上げ速度などの主要なパラメータを制御する方法を学びましょう。
Ptfe洗浄バスケットに部品を正しく入れる方法は?完璧で再現性のある洗浄の技術を習得する
徹底的な洗浄のためにPTFEバスケットを正しく装填する方法、部品の損傷を防ぐ方法、洗浄液への最大の露出を確保する方法を学びましょう。
Ptfe洗浄バスケットを使用前にどのような点検を行うべきか?安全で効果的な洗浄のための3ステッププロトコル
洗浄の有効性を確保し、部品の紛失を防ぎ、交差汚染を回避するために、PTFE洗浄バスケットに関する重要な3ステップの使用前点検について学びましょう。
Ptfe洗浄バスケットの使用手順は?完璧な結果のための3ステップガイド
PTFE洗浄バスケットを正しく使用するための3ステップの手順を学び、ラボでの効果的な洗浄、部品の安全性、機器の長寿命化を確実にします。
薄膜成膜用の基板をどのように洗浄しますか?優れた膜品質のために清浄な表面を実現する
薄膜成膜において、強力な膜密着性、一貫した特性、高いデバイス歩留まりを確保するための基板洗浄における重要な2段階プロセスを学びましょう。
オールPtfe電解槽の理想的な保管条件は何ですか?研究室の重要な資産を保護しましょう
汚染や材料劣化を防ぎ、実験の精度を確保するためのオールPTFE電解槽の必須保管プロトコルを学びましょう。
使用前にカーボン材料をどのようにクリーニングすべきですか?適切な準備で最高のパフォーマンスを確保する
汚染を防ぎ、信頼性の高い結果を保証するために、布、フェルト、紙などのカーボン材料を使用前にクリーニングする正しい方法を学びましょう。
油スラッジは有害ですか?重大なリスクと規制を理解する
油スラッジは、有毒な炭化水素、重金属、放射性物質を含むため、有害廃棄物です。リスクと適切な処分方法を学びましょう。
白金線/棒電極を使用前にどのように洗浄すべきか?信頼性の高い電気化学データを取得するためのガイド
正確で再現性のある電気化学測定のために、酸化物や汚染物質を除去するための白金電極の標準的な使用前洗浄プロトコルを学びましょう。
成膜材料とは何ですか?薄膜のための金属、セラミックス、化合物のガイド
PVDおよびCVDプロセスで使用される、金属、酸化物、窒化物などの成膜材料について、様々な用途向けの機能性薄膜を作成するために学びましょう。
なぜKbrはIr分光法で使用されるのか?透明な試料分析の鍵
赤外線透過性と独自のペレット形成特性により、なぜ臭化カリウム(KBr)がIR分光法に好ましいマトリックスとして使用されるのかを学びましょう。
溶接、ろう付け、はんだ付けのうち、どれが最も強力な接合方法ですか?プロジェクトに最適な接合方法の選択
溶接は最も強力な接合部を作りますが、ろう付けは異種金属の接合に優れています。最大の強度と信頼性を得るために、各方法をいつ使用すべきかを学びましょう。
化学気相成長法ではどのような金属が使用されますか?優れたコンフォーマルな金属コーティングを実現
タングステン、銅、アルミニウムなど、CVDで使用される主要な金属を発見し、CVDがその純度とコンフォーマリティのために選ばれる理由を学びましょう。
Cvd成膜できる材料とは?半導体から超硬質コーティングまで
シリコン、窒化チタン、ダイヤモンド、グラフェン、ポリマーなど、CVD材料の幅広い範囲を探求しましょう。あなたの用途のニーズに合った適切なコーティングを見つけてください。
グラフェンの転写プロセスとは?Cvd成長から最終用途まで
CVDで成長させたグラフェンをシリコンウェハなどの機能性基板へ移動させるための、重要な手順であるグラフェン転写の必須ステップを学びましょう。
Cvd法によるCnt合成中に使用される前駆体は何ですか?ナノチューブに最適な炭素源を選択してください
CVD合成におけるメタン、アセチレン、エタノールなどの炭化水素前駆体がCNTの成長、品質、構造をどのように制御するかを探ります。
耐火材料の要件は何ですか?極度の熱に耐える適切な材料を選択する
耐火材料の主要な要件(高融点、耐熱衝撃性、化学的安定性、機械的強度)を学び、過酷な用途に対応します。
薄膜技術の材料は何ですか?用途に最適な材料を選択する
金属、酸化物、窒化物、半導体など、薄膜技術の主要材料を探り、ニーズに最適なものを選択する方法を学びましょう。
薄膜は何でできていますか?金属、セラミックス、半導体、ポリマー
金属、誘電体、半導体、ポリマーなど、薄膜に使用される材料を発見し、特定の用途のために表面特性を改変するためにそれらがどのように選択されるかを探ります。
Dlcコーティングの材料とは?炭素、水素、シリコン、金属ドーピングに関するガイド
DLCコーティングの主要材料である炭素、水素、シリコン、金属について学び、それらが硬度、摩擦、熱安定性をどのように決定するかを理解しましょう。
分離と精製の主な手法は何ですか?実験の鍵となる技術を習得しましょう
蒸留、クロマトグラフィー、ろ過などの必須の分離・精製方法を学び、混合物から純粋な物質を効果的に単離する方法を習得しましょう。
病院におけるオートクレーブの利点は何ですか?患者の安全のために比類のない滅菌を実現
病院におけるオートクレーブの主な利点、すなわち完全な微生物破壊、非毒性滅菌、信頼性の高い感染予防についてご紹介します。
製造業における金型とは?精密金型で大量生産を実現
金型がどのようにして同一部品の大量生産を可能にするかをご覧ください。その役割、利点、および製造プロセスにおける主要な考慮事項について解説します。
作動油は環境に安全ですか?環境に優しい代替品の真実を発見する
有毒な鉱物油から生分解性のEAHFまで、作動油が環境に与える影響と、ニーズに合った作動油の選び方について学びましょう。
熱は油圧システムにどのように影響しますか?性能と信頼性を静かに蝕むもの
過剰な熱が、流体の粘度低下、摩耗の加速、コンポーネントの故障を引き起こし、油圧システムをいかに破壊するかを学びます。メンテナンスに不可欠です。
油圧システムではどのようにして熱が発生しますか?効率向上のためにエネルギー損失を特定し、管理する方法
油圧システムにおいて圧力損失と摩擦がどのように熱を発生させるかを学び、効率を改善し過熱を防ぐための戦略を発見してください。
フィルタープレスに代わるものは何ですか?連続脱水技術を比較する
デカンタ型遠心分離機、ベルトプレス、スクリュープレスなど、フィルタープレスに代わるものを探ります。お客様のニーズに合わせて、ケーキの乾燥度、処理能力、自動化を比較します。
カーボンナノ材料の特性とは何ですか?エレクトロニクスと材料における次世代の性能を解き放つ
グラフェンやナノチューブなどのカーボンナノ材料の、先進的な用途における卓越した熱的、電気的、機械的特性を探求します。
ろう付け装置は何をしますか?精密な強力で永久的な金属接合を作成する
ろう付け装置がどのように毛細管現象と溶加材を使用して金属を接合し、母材を溶融させることなく強力で永久的な結合を作成するかをご覧ください。
低温ろう付け合金とは何ですか?熱に弱い材料を損傷なく接合する
Al-Siのような低温ろう付け合金が、母材の融点以下で強力な接合部をどのように形成するかを学びましょう。これはアルミニウムや敏感な材料に最適です。
使用するはんだの種類は重要ですか? 強力で安全な接続のための適切な合金の選び方
融点、接合部の信頼性、安全性ではんだの選択が重要である理由を学びましょう。電子工作プロジェクトのために、鉛入りはんだと鉛フリーはんだを比較します。
タングステンはどのくらいの温度に耐えられますか?その極限の耐熱性と限界を解き明かす
タングステンは最大3,422°Cに耐えますが、実用上の限界があります。雰囲気、酸化、脆性がその実世界での性能にどのように影響するかを学びましょう。
なぜタングステンは耐熱性が高いのか?極限温度における原子の秘密を解き明かす
タングステンの原子構造、特に強力な金属結合と高密度の結晶格子が、どのようにしてあらゆる金属の中で最高の融点をもたらすのかをご覧ください。
タングステンを加熱するとどうなるか?その極度の耐熱性と独自の特性を発見する
タングステンがすべての金属の中で最も高い融点を持つ理由、極度の熱下での主要な挙動、および高温環境におけるその重要な用途について学びましょう。
真空は蒸気圧にどのように影響しますか?沸点を正確に制御する
真空が周囲の圧力(アンビエントプレッシャー)を低下させることで沸点が下がる仕組み、および低温蒸留や乾燥プロセスを可能にする方法を学びましょう。
廃棄物熱分解の排出物とは?よりクリーンな廃棄物変換へのガイド
廃棄物熱分解が、焼却とは異なり、いかに最小限の排出物でゴミを有用な製品に変えるかを発見してください。合成ガス、バイオオイル、バイオ炭について学びましょう。
膜厚は接着にどう影響するか?コーティング剥離における内部応力の隠れた役割
なぜ厚い膜ほど内部応力によって剥離しやすいのかを発見し、最大の接着を得るために膜厚を最適化する方法を学びましょう。
熱分解油を精製するにはどうすればよいですか?不安定なバイオオイルを使用可能な燃料にアップグレードする
熱分解油を水素化処理、ろ過、蒸留によって精製し、酸素を除去し、酸性度を低減し、安定した高価値燃料を生成する方法を学びましょう。
薄膜にはどのような材料が使われていますか?金属、半導体、セラミックスのガイド
金属、誘電体、半導体など、一般的な薄膜材料について探求します。材料の選択が電気的、光学的、機械的特性にどのように影響するかを学びます。
薄膜材料の例は何ですか?用途に応じた金属、誘電体、半導体
金、二酸化ケイ素、アモルファスシリコンなどの一般的な薄膜材料について探ります。導電性、絶縁性、または電子機器に適した材料の選び方を学びましょう。
薄膜にはどのような材料が使われていますか?用途に合った適切な材料を見つけましょう
シリコンやポリマーから金属やセラミックスまで、薄膜材料の範囲と、エレクトロニクス、光学、またはコーティングに適切な材料を選択する方法を探ります。
乳鉢と乳棒を使ってより小さな粒子を作成するプロセスは何ですか?三方針の技術を習得する
乳鉢と乳棒を用いた粒子径減少のプロセスである三方針(trituration)について学び、溶解性、混合性、反応速度の向上に役立てましょう。
ヒーター線になぜ高い抵抗が必要なのですか?電気を効率的に熱に変換するため
ジュール熱の法則に基づき、ヒーター線の性能に高い抵抗がいかに不可欠であるか、そしてそれがどのように効率的なエネルギー変換を可能にするかを学びましょう。
耐火物の要件とは?高温下での成功のための4つの柱
耐火物の4つの重要な要件、すなわち耐熱性、熱衝撃耐性、機械的強度、化学的・耐摩耗性について学びましょう。
金型にはどのような種類がありますか?製品に適したプロセスを選択するためのガイド
射出成形、ブロー成形、押出成形、圧縮成形、回転成形の5つの主要なプラスチック成形プロセスを探り、ニーズに合った金型を選択しましょう。
冷間静水圧プレス(Cip)の例とは何ですか?粉末成形における均一な密度を達成する
セラミックス、金属、グラファイトの一般的な冷間静水圧プレス(CIP)の例をご覧ください。CIPがいかにして高性能部品の均一な密度を保証するかを学びましょう。
活性炭の再生(Regeneration)と再活性化(Reactivation)の違いは何ですか?炭素の寿命と性能を最大化する
炭素の再生(軽度のリフレッシュ)と再活性化(熱によるリセット)の主な違いを学び、処理プロセスとコストを最適化しましょう。
インフレーションフィルムの要素とは?高品質フィルム生産のための主要コンポーネントをマスターする
押出機から巻取装置まで、インフレーションフィルムラインの不可欠な要素と、それらがどのように連携して耐久性のある一貫したプラスチックフィルムを製造するかを学びましょう。