あなたの研究室に高品質の機器と材料を提供する、信頼できる世界規模のサプライヤー!
について
ブログ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
製品
サンプルの準備
静水圧プレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
ガラス素材
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
Low Temperature Freezer
知識
会社
私たちについて
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
サービスサポート
お問い合わせ
メニュー
メニューを閉じる
サンプルの準備
静水圧プレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
ガラス素材
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
Low Temperature Freezer
知識
ブログ
について
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
知識
凍結乾燥の基本プロセスとは?凍結乾燥で品質を保つ
凍結乾燥(凍結乾燥)の3つの重要な段階と、医薬品や食品のようなデリケートな素材を熱によるダメージを与えることなく保存する方法について学びます。
適切な凍結乾燥は乾燥時間をどれだけ短縮できるか?ラボの効率を最適化する
凍結乾燥の最適化により、製品の完全性を保ちながら乾燥時間を30%短縮する方法をご覧ください。重要な要素と避けるべき落とし穴をご覧ください。
凍結乾燥における崩壊とは?凍結乾燥における構造破壊を回避する
凍結乾燥における崩壊が製品の品質にどのような影響を与えるかを学び、凍結乾燥中の構造的な不具合を防止するための戦略を発見してください。
凍結乾燥における結晶質と非結晶質の違いとは?最適な結果を得るための重要な洞察
凍結乾燥における結晶質と非結晶質の挙動がどのように異なり、プロセスパラメータや最終製品の品質に影響を与えるかを理解する。
凍結乾燥における共晶点とは?最適な製品安定性の鍵
医薬品、食品、生物学的サンプルの凍結乾燥において、共晶点がどのように品質を保証するかをご覧ください。
凍結乾燥中に避けるべき一般的な問題とは?凍結乾燥プロセスの最適化
製品の崩壊、コンデンサーの過負荷、ベーパー・チョーキングなどのフリーズドライの問題を防ぎ、安定した高品質の結果を得る方法を学びます。
二次乾燥段階で何が起こるのか?最適な水分除去のための主なステップ
二次乾燥段階で結合水を除去し、材料の安定性と長期保存に適した低残留水分(1~5%)を確保する方法をご覧ください。
凍結乾燥の一次乾燥段階で何が起こるのか?主なステップと装置
凍結乾燥の第一段階で、昇華、真空、凝縮器システムがどのように機能し、製品の完全性を維持するのかをご覧ください。
なぜ凍結段階が凍結乾燥で最も重要なのですか?昇華を成功させる鍵
凍結段階が凍結乾燥に不可欠である理由を学び、構造的完全性を確保し、繊細な素材を効率的に昇華させます。
フリーズドライの3つの段階とは?最適な保存のための必須ステップ
凍結乾燥の3つの重要な段階、凍結、一次乾燥、二次乾燥について学び、材料を効果的に保存します。
凍結乾燥機の仕組み精密凍結乾燥で生鮮食品を保存する
凍結乾燥の背後にある科学:昇華、真空効率、医薬品、食品、研究分野での応用について学びます。
フリーズドライヤーの目的とは?生鮮品を正確に保存する
フリーズドライがどのように医薬品、食品、研究サンプルの完全性と活性を維持しながら水分を除去して保存するのかをご紹介します。
凍結乾燥における崩壊とは?凍結乾燥における構造破壊を防ぐ
凍結乾燥における崩壊が製品の品質にどのような影響を与えるかを学び、凍結乾燥中の構造的な破損を防ぐための戦略を発見してください。
凍結乾燥における非晶質材料とは?最適処理のための重要な洞察
凍結乾燥における非晶質材料、そのユニークな特性、医薬品、バイオテクノロジー、食品保存のためのプロセスの最適化方法について学びます。
凍結乾燥における結晶性物質の特徴とは?安定性と効率のために凍結乾燥を最適化する
結晶形成からアニーリングまで、凍結乾燥における結晶性物質の挙動を学び、凍結乾燥プロセスを最適化することで、安定性と効率性を向上させます。
凍結乾燥の臨界温度とは?製品の完全性を保つ鍵
医薬品、食品、研究分野において、製品の崩壊を防ぎ、品質を確保するために、凍結乾燥において臨界温度が重要である理由をご覧ください。
凍結乾燥における共晶点とは?最適な凍結乾燥性能の鍵
共晶点が凍結乾燥にどのように影響し、製品の崩壊を防ぎ、医薬品や生物製剤の安定性を確保するのかを学びましょう。
凍結乾燥機を使用する際に避けるべき問題とは?最適性能のための主な問題と解決策
効率的な凍結乾燥と製品の完全性を確保するために、オーバーヒート、コンデンサーの過負荷、その他の重要な凍結乾燥機の問題を防止する方法を学びます。
一次乾燥(昇華)段階で何が起こるのか?主なステップと管理戦略
凍結乾燥における一次乾燥が、製品の完全性を保護するために正確な温度と圧力制御を行いながら、昇華により95%の水分を除去する方法をご覧ください。
凍結乾燥の凍結段階で何が起こるのか?製品品質を最適化するための主なステップ
凍結乾燥における凍結段階が、医薬品や生物製剤の製品構造、安定性、乾燥効率にどのような影響を与えるかをご覧ください。
凍結乾燥機の操作の3つの主要段階とは?最適な結果を得るために凍結乾燥をマスターする
製品の安定性と効率を高めるために、凍結乾燥、一次乾燥、二次乾燥の3つの重要な段階を学びます。
凍結乾燥機とは何ですか?精密凍結乾燥で試料を保存する
凍結乾燥機(フリーズドライヤー)の仕組み、医薬品や食品における主な用途、長期保存のメリットについてご紹介します。
凍結乾燥技術を使用して製造される一般的な医薬品の種類は?効能と安定性の維持
凍結乾燥(凍結乾燥)によってワクチン、タンパク質、抗体、医薬品がどのように保存され、安定性と保存期間の延長が保証されるかをご覧ください。
なぜ凍結乾燥医薬品は臨床試験に有利なのか?安定性とロジスティクスの最適化
優れた安定性、簡素化されたロジスティクス、一貫した投与精度により、凍結乾燥医薬品が臨床試験をどのように向上させるかをご覧ください。
ラボ用凍結乾燥機は医薬品研究開発でどのように活用されていますか?医薬品の安定性とワクチン開発に不可欠
ラボ用凍結乾燥機が医薬品の安定性を維持し、保存期間を延長し、製薬研究開発におけるワクチン開発をどのようにサポートしているかをご覧ください。
ラボ用凍結乾燥機の主な製薬用途は?医薬品の安定性と効率に不可欠
ワクチン製造から臨床試験まで、ラボ用凍結乾燥機が医薬品の安定性を高め、長期保存と正確な投与を実現する方法をご紹介します。
凍結乾燥は医薬品にどのような物性向上をもたらしますか?安定性と効率の最適化
凍結乾燥が、熱に敏感な化合物を保存しながら、医薬品の安定性、保存期間、輸送効率をどのように向上させるかをご覧ください。
凍結乾燥はどのような点で医薬品の品質を向上させますか?安定性と有効性の向上
凍結乾燥が医薬品の安定性を維持し、保存期間を延長し、治療効果を維持する方法をご覧ください。
なぜ凍結乾燥は医薬品の生物活性保存に最適なのか?主な利点の説明
凍結乾燥が医薬品中のデリケートな生体分子をどのように保存し、安定性、効能、保存期間の延長を実現するかをご覧ください。
凍結乾燥は医薬品の保存期間をどのように延長しますか?効能と安定性を保つ
凍結乾燥がどのように水分を除去し、微生物の繁殖や化学的劣化を抑制し、医薬品の保存期間を何年も延ばすかをご覧ください。
医薬用途でラボ用凍結乾燥機を使用する主な利点は何ですか?
ラボ用凍結乾燥機がどのように医薬品の安定性を高め、保存期間を延長し、生物製剤やワクチンの製品品質を向上させるかをご覧ください。
フリーズドライとは?高精度で品質を保つ
凍結乾燥が昇華によってデリケートな素材を保存し、医薬品、バイオテクノロジー、食品産業における品質を維持する方法をご紹介します。
凍結乾燥はどのようにラボの研究をサポートしますか?長期研究のためのサンプルの保存
凍結乾燥が生物学的サンプルをどのように保存し、保存期間を延ばし、高度な研究技術をサポートするのかをご覧ください。
なぜ凍結乾燥が特定の化学製品に重要なのですか?完全性を保ち、保存期間を延ばす
凍結乾燥がどのように化学的安定性を維持し、保存期間を延ばし、あらゆる業界の製品性能を向上させるかをご覧ください。
凍結乾燥は生物学的用途にどのように使用されていますか?研究および医学のための重要な生体材料の保存
凍結乾燥が生物学的サンプルをどのように保存し、保存安定性を高め、ワクチンや治療法の開発をどのようにサポートするかをご覧ください。
フリーズドライのペットフードの利点とは?プレミアム栄養でペットの健康増進
フリーズドライの利点は、栄養素の保持、人工的な保存料不使用、嗜好性の向上などが挙げられます。
凍結乾燥は乳製品にどのような効果がありますか?栄養保存と賞味期限の延長
フリーズドライがどのように乳製品の栄養素を保持し、保存期間を延ばし、冷蔵せずに利便性を向上させるかをご覧ください。
なぜフリーズドライは野菜や果物の保存に適しているのか?保存期間の延長と栄養素の保持
フリーズドライがいかに果物や野菜の栄養素、風味、食感を保ち、冷蔵せずに保存期間を延ばすかをご覧ください。
食品保存におけるフリーズドライの利点とは?賞味期限の延長と栄養素の保存
フリーズドライがいかに従来の保存方法よりも食品の品質、栄養、保存安定性を維持するかをご覧ください。
凍結乾燥技術はどのような産業で役立つのか?その多様な用途を探る
凍結乾燥技術が医薬品、食品、研究などの品質保持と保存期間の延長にどのように役立つかをご覧ください。
実験室用凍結乾燥機はどのような分野で使用されていますか?各業界における重要な用途
製薬、バイオテクノロジー、食品科学など、繊細な材料を効果的に保存するためにラボ用凍結乾燥機がどのように使用されているかをご覧ください。
実験室用凍結乾燥機を使用する際の注意点とは?重要な安全性とメンテナンスのヒント
密封チェック、真空モニタリング、使用後の洗浄など、ラボ用凍結乾燥機の性能を最適化するための重要な注意事項を学びます。
実験室用凍結乾燥機の使用手順とは?サンプル保存の完全ガイド
構造的完全性を維持しながら、生物学的サンプルを効果的に保存するための実験室用凍結乾燥機の操作に不可欠な手順をご紹介します。
実験室用凍結乾燥機の主要部品とは?効率的な凍結乾燥に不可欠な部品
シェル、冷凍システム、真空ポンプなど、ラボ用凍結乾燥機の重要な構成要素について学び、最適な性能を引き出しましょう。
従来の乾燥方法と比較して、実験室用凍結乾燥機を使用する利点は何ですか?
ラボ用フリーズドライヤーが、高速、低エネルギー使用、優れた製品品質で、従来の乾燥方法よりも優れている理由をご覧ください。
実験室用凍結乾燥機の原理とは?精密凍結乾燥で試料を保存する
実験室用フリーズドライヤーが、凍結、昇華、脱着を通して、デリケートな材料を損傷することなく保存する仕組みをご紹介します。
凍結乾燥と従来の冷凍保存の違いとは?高精度でサンプルを保存
構造的完全性、保存期間、コスト効率など、生物学的保存のための凍結乾燥と従来の凍結との主な違いを探ります。
凍結乾燥に適した生物試料の種類は?凍結乾燥で敏感な生物製剤を保存する
ワクチン、タンパク質、診断用サンプルなど、安定性と有効性を維持するために凍結乾燥が有効な生物学的材料をご覧ください。
なぜ従来の保存方法は生物学的製品に適していないのか?デリケートな生体分子を効果的に保護する
従来の保存方法では生物製剤が失敗する理由と、凍結乾燥のような高度な方法で安定性と有効性を確保する方法について学ぶ。
実験室での凍結乾燥の主な利点は何ですか?繊細な材料を正確に保存
実験室での凍結乾燥が、熱に敏感な材料をどのように保存し、保存期間を延ばし、実験室や産業での再構成を容易にするかをご覧ください。
凍結乾燥プロセスの重要なステップとは?精密凍結乾燥で品質を保つ
凍結から昇華、脱着まで、デリケートな材料を保存するための凍結乾燥(凍結乾燥)の3つの重要な段階を学びます。
実験室での凍結乾燥による生物学的製剤の保存方法とは?凍結乾燥のエッセンシャルガイド
生物学的製剤の完全性を保ちながら水分を除去する凍結乾燥の方法をご紹介します。ワクチン、酵素、研究サンプルに最適です。
製薬やバイオテクノロジー産業における実験室での凍結乾燥の目的は何ですか?
実験室での凍結乾燥がどのように繊細な生物学的材料を保存し、保存性を高め、製薬やバイオテクノロジーにおける生物学的活性を維持するかをご覧ください。
凍結乾燥プロセスの仕組み精密凍結乾燥によるサンプルの保存
凍結乾燥(凍結乾燥)の段階と、研究室、製薬、食品産業で繊細な材料を保存するためのその利点について学びます。
凍結乾燥の一般的な用途は?医薬品や食品などの保存
医薬品、食品保存、研究における凍結乾燥のアプリケーションをご覧ください。凍結乾燥がどのように製品の完全性を維持するのかをご覧ください。
ラボで凍結乾燥機を使用する主な理由とは?精密かつ効率的にサンプルを保存
フリーズドライヤーがサンプルの完全性を保ち、保存期間を延ばし、あらゆる業界のラボの効率を高めるために不可欠である理由をご覧ください。
凍結乾燥・凍結乾燥プロセスとは?繊細な材料を正確に保存
凍結乾燥の仕組み、主な手順、そしてなぜ医薬品、食品、生物学的サンプルを熱による損傷なしに保存するために凍結乾燥が不可欠なのかを学びましょう。
なぜ凍結乾燥は通常の乾燥よりも効果的だと考えられているのでしょうか?品質保持と賞味期限の延長
凍結乾燥が、医薬品、食品、ラボラトリーにおいて、通常の乾燥よりもいかに構造的完全性、栄養素、保存性を保持するかをご覧ください。
ラボで使用される一般的な乾燥方法とその欠点とは?サンプルの完全性に関する重要な洞察
一般的なラボの乾燥方法とその欠点、サンプルの品質を保つための適切な手法の選び方をご紹介します。
なぜ実験室用凍結乾燥機は経済的なツールなのか?効率とコスト削減の最大化
実験室用凍結乾燥機が、エネルギー効率、長期保存、業界横断的な汎用性により、いかにコストを削減するかをご覧ください。
ラボ用フリーズドライヤーの主な利点は?品質の保持と保存期間の延長
ラボ用フリーズドライヤーが、医薬品、バイオテクノロジー、食品科学において、どのように繊細な材料を保存し、保存期間を延ばし、構造的完全性を維持するかをご覧ください。
凍結乾燥はバイオテクノロジーや化学の分野でどのように応用されていますか?重要なサンプルを正確に保存
生物学的活性の維持、純度の確保、スケーラビリティの向上により、凍結乾燥がバイオテクノロジーおよび化学プロセスをどのように強化するかをご覧ください。
科学研究における凍結乾燥の役割とは?画期的な発見のためのサンプルの保存
凍結乾燥がどのように繊細な生物学的および化学的サンプルを保存し、科学研究における安定性と再現性を確保するかをご覧ください。
凍結乾燥は製薬業界にどのようなメリットをもたらしますか?賞味期限の延長と薬効の維持
凍結乾燥が医薬品の安定性を高め、保存期間を延ばし、コストを削減する方法をご覧ください。ワクチン、生物製剤、原薬に最適です。
凍結乾燥技術をよく利用する産業は?主なアプリケーション
凍結乾燥(凍結乾燥)が医薬品、食品、バイオテクノロジーなどでどのように使用され、製品を保存し、賞味期限を延ばしているかをご覧ください。
ラボにおける凍結乾燥技術の主な目的は何ですか?試料を正確に保存する
バイオテクノロジー、製薬、食品産業において、凍結乾燥がどのように研究室で繊細な材料を保存し、保存期間を延ばし、完全性を維持するかをご覧ください。
ラボ用凍結乾燥機は、化学およびバイオテクノロジープロセスにおいてどのようなメリットをもたらしますか?安定性と効率の向上
ラボ用フリーズドライヤーが、化学およびバイオテクノロジーのアプリケーションにおいて、どのように材料の完全性を維持し、安定性を向上させ、効率を高めるかをご覧ください。
ラボ用凍結乾燥機は科学研究をどのようにサポートしますか?試料を正確に保存
サンプルの完全性を保ち、長期保存を可能にし、多様な科学分野をサポートすることで、ラボ用フリーズドライヤーがいかに研究を強化するかをご覧ください。
食品産業におけるラボ用凍結乾燥機の役割とは?品質とイノベーションの維持
インスタントコーヒー、スナック菓子、宇宙飛行士の食事など、ラボ用フリーズドライヤーがどのように味、栄養、保存性を保つかをご覧ください。
ラボ用凍結乾燥機は製薬業界にどのようなメリットをもたらしますか?効能の保持と保存期間の延長
ラボ用凍結乾燥機が医薬品の安定性、ワクチン保存、研究開発の効率をどのように高めるかをご覧ください。今すぐ主なメリットをご確認ください。
フリーズドライの3大工程とは?精密さで品質を保つ
フリーズドライの3つの重要な段階、凍結、一次乾燥、二次乾燥について学び、材料を効果的に保存します。
ラボ用フリーズドライヤーの主な用途は?熱に敏感な材料を正確に保存
ラボ用フリーズドライヤーがどのように医薬品を安定させ、バイオテクノロジー・サンプルを保存し、栄養損失を最小限に抑えた保存可能な食品を製造しているかをご覧ください。
ラボ用凍結乾燥機で処理できる液体サンプルの種類は?繊細な試料を正確に保存
生物学的標本から医薬品まで、凍結乾燥に適した多様な液体サンプルをご覧ください。
なぜ凍結乾燥機は生物・化学実験に不可欠なのでしょうか?完全性の保持と安定性の向上
フリーズドライヤーがサンプルの完全性保持、保存期間の延長、ラボでの再現性の確保に不可欠な理由をご覧ください。
ラボでサンプルを凍結乾燥する利点とは?精密かつ効率的にサンプルを保存
凍結乾燥がどのようにサンプルの寿命を延ばし、安定性を高め、ラボの作業効率を向上させるかをご覧ください。デリケートな生物試料や医薬品に最適です。
フリーズドライの主な工程は?正確な保存
医薬品、食品、バイオテクノロジー材料の最適な保存のために、凍結乾燥、一次乾燥、二次乾燥の3つの重要な段階を学びます。
実験室における凍結乾燥機の主な機能とは?繊細な材料を正確に保存する
実験室用凍結乾燥機が、長期安定のために構造的完全性を維持しながら水分を除去し、生物学的サンプルをどのように保存しているかをご覧ください。
極低温加工は何に使うのですか?
極低温加工:利点、用途、業界での使用
クライオミルとは?
クライオミルの利点より速い粉砕、コンタミの減少、その他
極低温加工のメリットとは?効率、品質、コスト削減
コストを削減し、精度を高めながら、工具寿命、仕上げ面粗さ、生産性を向上させる極低温加工についてご覧ください。
極低温粉砕とは?利点、用途、効率
極低温粉砕が、食品、医薬品、材料科学などの産業において、いかに効率を高め、熱劣化を防ぎ、製品の品質を向上させるかをご覧ください。
極低温ボールミルとは?プロセス、利点と応用
極低温ボールミルについて、そのプロセス、微細構造の微細化などの利点、熱に敏感な材料への応用についてご紹介します。
クライオミリングの意味とは?プロセス、利点、およびアプリケーションの説明
クライオミリングについて、そのプロセス、従来の粉砕と比較した場合の利点、材料科学や産業における応用例などをご紹介します。
クライオミリングの仕組み プロセス、利点とアプリケーションの説明
クライオミリングがどのようにナノ構造の粉末を製造し、熱と酸化を抑制し、極低温環境で材料特性を向上させるかをご覧ください。
凍結粉砕とは?用途、利点、プロセスの説明
凍結粉砕(極低温粉砕):食品、医薬品、材料科学における応用、利点、プロセスの詳細をご覧ください。
クールグラインド技術とは?利点、プロセス、アプリケーション
極低温粉砕が、熱の低減、酸化防止、均一な粒子径により、食品や医薬品などの産業における材料加工をどのように向上させるかをご覧ください。
冷間研削のプロセスとは?メリット、プロセス、用途
低温粉砕が、ハーブ、医薬品、プラスチックなどの熱に敏感な素材に対して、いかに品質を保ち、熱によるダメージを減らし、エネルギー効率に優れているかをご覧ください。
低温粉砕とは?低温技術で食品加工に革命を起こす
スパイス、チーズ、ドライフルーツなど、熱に弱い食品の風味、香り、栄養素を低温粉砕がどのように保つかをご覧ください。
低温粉砕スパイスとは?風味保存の未来を発見する
低温粉砕がスパイスの風味、香り、品質を保ち、従来の方法よりも優れた結果をもたらすことを学ぶ。
ハーブの低温粉砕とは?高度な技術で風味と栄養素を保つ
低温粉砕でハーブの風味、栄養素、品質を氷点下で保つ方法をご覧ください。スパイスや漢方薬業界に最適です。
極低温研削とは?材料加工の精度と効率を引き出す
極低温粉砕:均一な粒子径、材料の品質保持、エネルギー効率を実現する低温粉砕プロセス。
クライオミルとは?繊細な材料の精密な極低温研削を実現
極低温粉砕に液体窒素を使用し、揮発性成分を保存し、熱劣化を最小限に抑えるクライオミルの仕組みをご覧ください。
極低温加工とは?極低温技術で精密研削を実現
超低温を利用した極低温粉砕により、熱に弱い材料を粉砕し、均一な粒子径と最小限の熱劣化を実現する方法をご覧ください。
クラムゴムの低温粉砕とは?効率的で持続可能なゴムリサイクルを実現
ゴムを凍らせて効率的で均一な粒子を製造し、熱劣化とエネルギー消費を削減する極低温粉砕の方法をご覧ください。
極低温研削とは?効率的な低温材料加工ガイド
発熱の低減、材料劣化の最小化、熱に敏感な材料の効率的な加工など、極低温研削の利点をご覧ください。
極低温研削とは?熱に敏感な材料の精度と効率を引き出す
極低温粉砕がどのように繊細な部品を保護し、粒子の均一性を高め、あらゆる産業の生産性を向上させるかをご覧ください。
クライオミリングとは?ナノ構造材料合成のブレークスルー
クライオミリングによって、特性が向上し、汚染が減少し、熱安定性が改善されたナノ構造材料がどのように製造されるかをご覧ください。
低温粉砕とは?低温粉砕で高品質の微粉砕を実現する
精密な粒子径、摩耗の低減、エネルギー消費の低減により、冷間粉砕(極低温粉砕)がいかに材料加工を向上させるかをご覧ください。
カルダモンの低温粉砕とは?高度な技術で風味と品質を高める
氷点下の温度と液体窒素を使用することで、カルダモンの味、香り、薬効を保つ低温粉砕法をご覧ください。
極低温ミリングとは?ナノ構造材料のパワーを解き放つ
極低温粉砕によって、発熱や酸化を抑えたナノ構造の粉体がどのように作られるかをご覧ください。先端材料科学に最適です。
« 前へ
次へ »