あなたの研究室に高品質の機器と材料を提供する、信頼できる世界規模のサプライヤー!
について
ブログ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
製品
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
会社
私たちについて
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
サービスサポート
お問い合わせ
メニュー
メニューを閉じる
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
ブログ
について
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
よくある質問 -
ラボ用加熱プレート付きマニュアル高温加熱油圧プレス機
油圧プレスの主な機能は何ですか?産業用および実験室用アプリケーション向けに巨大な力を生成する
油圧プレスがパスカルの原理を利用して、鍛造、材料試験、および実験室でのサンプル調製のために力を増幅する方法をご覧ください。
油圧プレス(油圧プレス機)の目的は何ですか?成形、破砕、圧縮のための巨大な力を発生させること
油圧プレスがパスカルの原理を利用して、いかにして金属成形、圧縮、実験サンプル調製のために正確な制御下で力を増幅させるかを発見してください。
産業における油圧の利用法とは?重荷重用途のための計り知れない力の解放
産業用油圧を探る:製造、建設、航空宇宙分野でいかにして力を増幅させるか。主な利点と応用例を学ぶ。
油圧プレスが適用される例にはどのようなものがありますか?サンプル調製から工業製造まで
油圧プレスの用途を探る:材料の接着や木材のラミネートから、金属成形や科学的なサンプル調製まで。その仕組みを学びましょう。
Ir分光法でKbrペレットが基準として使用されるのはなぜですか?干渉のないクリアな分析を実現する
KBrが固体試料分析に最適なIR透過性マトリックスであり、ホルダー材料による干渉なしに正確なスペクトルを保証する理由を学びましょう。
なぜKbrはIr分光法に用いられるのか?固体試料分析に理想的な媒体
KBrがIR分光法の標準である理由を発見してください。そのIR透過性、ペレット形成特性、および正確な結果を得るための主要な取り扱い要件について学びましょう。
Ir分光法でKbrを使用する理由とは?固体のサンプル分析で鮮明で高品質な結果を得る
KBrがIR分光ペレットにとって理想的なマトリックスである理由を学びましょう。KBrは透明性、適切な希釈性、そして正確な結果を得るための干渉の少なさを提供します。
Ir分光法のためのKbrペレットはどのように準備しますか?鮮明なスペクトルを得るための重要な手順を習得しましょう
透明なディスクと高品質のスペクトルデータを保証するために、IR分光法用の完璧なKBrペレットを準備するための段階的なプロセスを学びましょう。
油圧プレスに関連するリスクは何ですか?主な安全上および運用上の危険
高圧流体噴射、漏れ、引火性、高エネルギーコストなど、油圧プレスのリスクについて学びましょう。必須の安全ガイド。
Ir分光法で使用されるサンプリング技術にはどのような種類がありますか?Kbr法、マルチ法、Atr法のガイド
KBrペレット、マルチ、液体セル、そして固体、液体、水溶液のための最新のATRなど、IR分光法のサンプリング技術を探ります。
液相焼結または反応焼結の魅力的な特徴は何ですか?より低い温度で高密度を実現する
液相焼結と反応焼結が、従来の製法よりも迅速かつ低温で高密度化を可能にし、複雑な部品や焼結しにくい材料に理想的である理由をご覧ください。
膜電極接合体(Mea)形成プロセスにおける高性能ホットプレスの機能は何ですか?
燃料電池における接触抵抗の低減と機械的接着の強化により、高性能ホットプレスがMEA製造を最適化する方法を学びましょう。
Triso粒子を含む燃料ペレットの製造における精密油圧プレス装置の重要性は何ですか?
精密油圧プレスがTRISO粒子を保護し、安全で効率的な原子力燃料ペレット製造に最適な密度を確保する方法を学びましょう。
光触媒顔料の分析において、実験室用油圧プレスはどのような役割を果たしますか? | サンプル標準化の強化
実験室用油圧プレスが光触媒顔料サンプルの標準化を行い、正確な光学特性および電気化学的性能評価を可能にする方法をご覧ください。
実験室用油圧プレスは、Xasサンプル品質にどのように役立ちますか?優れたスペクトル明瞭度を実現する精密ペレット
実験室用油圧プレスが、吸収長を最適化し散乱を最小限に抑えるために、高密度で均一なペレットを作成することでXASデータをどのように強化するかをご覧ください。
積層銅ベースの電気接点材料の製造における実験用油圧プレスの応用は何ですか?
実験用油圧プレスが60MPaで粉末層を安定させ、混合を防ぎ、銅ベースの接点材料の完全性を確保する方法を学びましょう。
熱間等方圧加圧(Hip)の概要は何ですか?Hipで優れた材料の完全性を実現
熱間等方圧加圧(HIP)が鋳物や金属粉末などの材料の内部欠陥をどのように除去し、強度と疲労寿命を向上させるかをご覧ください。
圧縮成形は速いプロセスですか?低容量生産における市場投入までの時間を短縮するためのガイド
圧縮成形と射出成形の速度を比較します。低容量、大型部品の市場投入までの最短経路として、なぜ圧縮成形のより速いツーリングが役立つのかを学びましょう。
油圧プレスは何の金属でできていますか?高張力鋼の重要な役割
高張力鋼合金が、安全性と耐久性を確保するために、油圧プレスのフレーム、シリンダー、プラテンの標準となっている理由を発見してください。
油圧プレスはどれほどの強度がありますか?パスカルの原理で計り知れない力を解き放つ
油圧プレスが、パスカルの原理を利用して、いかにして10トンから50,000トン超の力を生み出し、様々な用途で効率的に力を増幅させるかを発見してください。
焼結において加圧力が重要なのはなぜですか?より高密度で強力な材料をより速く実現するために
焼結における加圧力が、材料の障壁を克服し、緻密化を促進し、粒成長を抑制して優れた結果をもたらす方法を学びましょう。
油圧加熱プレスの機能とは?全固体電池ポリマー膜の完成
油圧加熱プレスがポリマー電解質を高密度化・成形し、リチウム硫黄電池の機械的強度とイオン輸送を向上させる方法を学びましょう。
ホット圧延機の機能は何ですか?固体電解質性能と密度の最適化
熱と圧力によって多孔性を低減し、イオン伝導率を高めることで、ホット圧延機が固体電解質膜をどのように強化するかを学びましょう。
Assbアセンブリに実験室用油圧プレスが使用されるのはなぜですか?最適な全固体電池密度を実現するための392 Mpaの達成
高圧油圧プレスが全固体電池(ASSB)の空隙をなくし、界面インピーダンスを低減して最高のパフォーマンスを実現する方法をご覧ください。
従来の溶液キャスト法よりも熱プレス成形が好まれるのはなぜですか?高分子電解質に関する専門家比較
溶媒を使用せず、バッテリー密度を高めることで、熱プレス成形が固体高分子電解質において溶液キャスト法よりも優れている理由をご覧ください。
リチウム-Llzo電池には加熱式油圧プレスがどのように使用されますか?熱圧着で界面結合を最適化する
加熱式油圧プレスがリチウムのクリープを可能にし、空隙をなくして低インピーダンスのリチウム-LLZO電池界面を作成する方法を学びましょう。
銅のナノメートルスケールの微細構造を真空熱プレス機の温度制御システムはどのように維持するのですか?
真空熱プレス機が精密な低温制御と高圧を利用して結晶粒成長を防ぎ、45nmの銅微細構造を維持する方法をご覧ください。
固体電池の準備において、単軸油圧プレスはどのような役割を果たしますか?高密度で高導電性のペレットを実現
単軸油圧プレスが、固体電池の製造において電解質を高密度化し、多孔性を排除し、イオン伝導率を最大化する方法を学びましょう。
熱間等方圧加圧(Hip)の主な用途は何ですか?材料密度と完全性を向上させる
熱間等方圧加圧(HIP)がいかにして気孔率を除去し、3Dプリント部品を緻密化し、優れた結果をもたらす高度な金属クラッディングを可能にするかを探ります。
Hpht成長サイクル完了後、どのようなことが起こり、どのような形状のダイヤモンドが得られますか?専門家による分析
HPHT成長した粗ダイヤモンドの成長後のクリーニング、抽出、および独特の立方体八面体形態について学びましょう。
Hpht法によるダイヤモンドの成長の段階的なプロセスは何ですか?ラボグロウンダイヤモンド合成をマスターする
HPHT技術が地球のマントルを模倣して、極度の熱と圧力でダイヤモンドを作成する方法を学びましょう。5段階の成長サイクルと構成要素を探ります。
熱間等方圧加圧(Hip)のパラメーターは何ですか?完全緻密化のためのマスター温度、圧力、時間
HIPの3つの主要なパラメーターを発見してください:高温、等方圧、および処理時間。これらがどのように連携して欠陥を除去し、材料を緻密化するかを学びましょう。
金属のHip処理とは?内部欠陥を排除し、優れた部品性能を実現
熱間等方圧プレス(HIP)が金属の内部空隙を修復し、重要な用途における疲労寿命、強度、信頼性をどのように向上させるかをご覧ください。
油圧プレスはどのくらいの圧力をかけられますか?圧力と力の違いを理解する
油圧と加わる力の重要な違い、および特定の用途に適したプレス機の選び方を学びましょう。
油圧システムを過負荷にするとどうなりますか?壊滅的な機器の故障と安全上の危険を回避する
油圧システムの過負荷が引き起こす、部品の爆発的破損から隠れた損傷に至るまでの深刻な結果と、高額なダウンタイムや安全上のリスクを防ぐ方法を学びましょう。
油圧システムの安全上の注意点は何ですか?壊滅的な故障を防ぐための重要なガイドライン
減圧、ロックアウト/タグアウト(LOTO)、高圧流体噴射による負傷の防止など、油圧システムの重要な安全上の注意点について学びましょう。
油圧プレスが漏れるのはなぜですか?一般的なシールとシリンダーの問題を診断し、修理する
油圧プレスからの漏れの原因を特定します。効果的で永続的な修理のために、劣化したシール、緩んだ継手、シリンダーの損傷を診断する方法を学びます。
油圧プレスは、何に基づいて構築されていますか?パスカルの法則の力の解き明かし
油圧プレスがどのようにパスカルの法則に基づいて構築され、シリンダー、ポンプ、フレームなどの主要コンポーネントを使用して流体圧で巨大な力を発生させるかを発見してください。
油圧プレスを使うのは誰か?成形、圧縮、試験のための制御された力の習得
金属の鍛造や製造から、科学的なサンプル調製や材料試験に至るまで、油圧プレスの主要な産業と用途を発見してください。
自動プレス機とは?現代の製造業における高精度な力
自動プレス機が油圧とスマート制御をどのように利用して、製造および研究室環境で精密かつ再現性の高い作業を行うかをご覧ください。
油圧プレスの圧力とは?トン数、力、安全な操作の理解
油圧プレスの圧力(例:250 kg/cm²)がトン数と出力される力とどのように関連するかを学びます。パスカルの法則の役割と、用途に最適なプレスを選択する方法を発見してください。
熱間等方圧接(Hip)の意味とは何ですか? 100%の密度と優れた材料の完全性を達成する
熱間等方圧接(HIP)が、金属、セラミックス、3Dプリント部品の内部欠陥を排除し、最高の性能を引き出すために、熱と均一な圧力をどのように利用するかを学びましょう。
油圧プレスに伴うリスクとは?本質的な安全性と運用の洞察
油圧プレスのリスク:機械的故障、流体の危険性、操作ミスについて学びます。効果的なリスク軽減と安全のための戦略を入手してください。
材料加工におけるHipとは?重要部品のほぼ完璧な密度を実現する
熱間等方圧プレス(HIP)が内部欠陥を排除し、機械的特性を向上させ、粉末を統合して優れた材料性能を実現する方法をご覧ください。
熱間プレス加工の用途は何ですか?高密度・高性能材料の製造
焼結ブレーキパッド、クラッチディスク、先進セラミックス、超合金など、優れた強度と耐摩耗性を持つ材料を製造するための熱間プレス加工の主要な用途をご覧ください。
油圧プレスはどれくらいの力を発生させることができますか? 1トンから100,000トン超のパワーまで
パスカルの法則、ピストンの面積、および特定の用途に対する圧力を利用して、油圧プレスがどのようにして1トンから100,000トン超の力を発生させるかを学びましょう。
油圧プレスを自作するにはどれくらいの費用がかかりますか?パワーと安全性を考慮した予算編成のためのDiyガイド
鋼製フレームや油圧システムの費用から、隠れた工具や安全上の考慮事項まで、油圧プレスを自作する真のコストを学びましょう。
油圧プレスの重量はどのくらいですか?20Kgの卓上型から数トン規模の産業用巨大機まで
油圧プレスの重量は、サイズと出力によって異なり、20kgの卓上モデルから数トンに及ぶ産業用プレスまであります。適切なプレスの選び方を学びましょう。
油圧プレスはどれくらいの重さに耐えられますか?本当の尺度は機械の重量ではなくトン数です
油圧プレスの能力が物理的な重量ではなく、力(トン)で測定される理由と、用途に合った適切なトン数の選び方について学びましょう。
油圧プレスはどれくらいの強さがありますか? 1トンから8万トンのスケーラブルな力まで
油圧プレスのパワーを発見してください。パスカルの原理が、鍛造、深絞りなどのために1トンから8万トン超の力をどのように可能にするかを学びましょう。
熱間等方圧加圧(Hip)プロセスとは何ですか?重要部品に完璧な材料密度を実現する
熱間等方圧加圧(HIP)がいかに内部の気孔を除去し、粉末を固め、材料を接合して優れた部品の信頼性を実現するかを学びましょう。
セラミックスの熱間プレス(ホットプレス)のプロセスとは?優れた密度と性能を実現する
熱間プレスが、熱と圧力を組み合わせて、優れた機械的特性と微細なミクロ構造を持つ高密度で高性能な材料をどのように作り出すかを学びましょう。
油圧プレスでは圧力は一定ですか?力の増幅の力を解き放つ
パスカルの法則とF=P×Aの公式が、油圧プレスが一定の流体圧力を利用して力を増幅し、強力な用途にどのように役立つかを学びましょう。
圧縮成形が重要な理由とは?大型で耐久性のある部品に比類ない強度を提供
圧縮成形が、熱硬化性プラスチックや複合材料から、要求の厳しい用途向けの非常に丈夫で耐久性のある部品を製造するために不可欠である理由をご覧ください。
Li8/7Ti2/7V4/7O2全固体電池の組み立てに700 Mpaが必要なのはなぜですか?イオン伝導を最大化する鍵
全固体電池の組み立てにおいて、700 MPaの圧力が界面の空隙をなくし、イオン伝導率を最大化するために不可欠である理由を学びましょう。
バッテリー二層に380Mpaの圧力を印加するために油圧プレスが使用されるのはなぜですか?優れた密度と安全性を実現
油圧プレスによる380MPaの圧力が、固体電池の組み立てにおける空隙をなくし、抵抗を低減し、デンドライトをブロックする方法を学びましょう。
全固体電池における熱プレス工程は、どのような問題を解決しますか?界面剥離を今すぐ解消
熱プレスが全固体電池の剥離を防ぐ仕組みを学びましょう。アノードとセパレーター層を融合させ、安定した高容量サイクルを実現します。
複合粉末の予備加圧の必要性とは?真空熱間プレス焼結における安定性の向上
真空焼結前に、油圧プレスで粉末を予備加圧することが、グリーン密度、構造的完全性、および空気排出にとってなぜ不可欠なのかを学びましょう。
ホットアイソスタティックプレス(Hip)は、Llza固体電解質の緻密化にどのように貢献しますか?
ホットアイソスタティックプレス(HIP)が、LLZA固体電解質の気孔率をなくし、密度を最大化するために、1158℃で127 MPaの圧力を使用する方法を学びましょう。
実験室用油圧プレスを分子ふるい触媒に使用する目的は何ですか?リアクター性能の最適化
油圧プレスが分子ふるい粉末を耐久性のある触媒形状に加工し、固定床リアクターでの流れと耐久性を最適化する方法をご覧ください。
高圧加熱プレスは、フッ素樹脂・カーボンナノチューブ複合材料をどのように強化しますか?強度を20%向上
500 MPaの圧力と350℃の熱がナノ複合材料の密度を最適化し、気孔率をなくし、圧縮強度を最大20%向上させる方法をご覧ください。
多孔質を低減する上で、温間等方圧プレスはどのような役割を果たしますか?高密度固体電池電極の実現
温間等方圧プレスがいかに均一な圧力と熱を用いて電極の多孔質を除去し、緻密なイオン輸送チャネルを形成するかをご覧ください。
Ca3Co4O9ペレット化に実験室用油圧プレスが不可欠なのはなぜですか?予備焼結中の物質輸送を最適化する
実験室用油圧プレスがCa3Co4O9焼結中の構造的完全性を確保し、物質輸送を促進して優れた材料を実現する方法を学びましょう。
実験室用油圧ペレットプレスは、炭化ケイ素ウィスカー(Sicw)強化2024アルミニウムマトリックス複合材料プリフォームの調製にどのように貢献しますか?
ラボ油圧ペレットプレスが、真空熱間プレス焼結のために気孔率を低減することにより、高密度のSiCw/2024アルミニウム予備成形体をどのように作成するかを学びましょう。
油圧プレスを定格以上に酷使することは可能か?重大なリスクと結果を理解する
油圧プレスを過負荷にすることの深刻な危険性(機器の損傷から壊滅的な故障まで)と、安全に操作する方法を学びましょう。
Kbrペレットの目的とは?固形サンプルのクリアなFtir分析を可能にする
KBrペレットが、どのようにして固形サンプルをFTIR分光法のために準備し、正確な分析のための赤外光透過性マトリックスを作成するかを学びましょう。
Kbrペレットは何に使用されますか?正確なFtir分光分析の鍵
KBrペレットがFTIR分光法による固体試料分析をどのように可能にし、正確な赤外光透過のための透明なディスクを保証するかを学びましょう。
Kbrの機能とは?固体Ftir分析における高品質な分析のための重要なツール
KBrペレットがどのようにして、光散乱を最小限に抑え、透明なディスクを作成することで、正確なFTIR分光法を可能にし、固体のサンプル分析を明確にするかをご覧ください。
Ir分光法におけるKbrの役割とは?正確な固体試料分析のための透明ペレットの作成
KBrペレットがIR分光法において不活性で透明なマトリックスをどのように提供し、干渉なしに固体試料の明確な分析を可能にするかをご覧ください。
油圧プレス(ハイドロリックプレス)の定格圧力は何ですか?最大力としてのトン数に焦点を当ててください。
油圧プレスの真の定格が内部PSIではなくトン数である理由と、アプリケーションの力と速度のニーズに合わせて適切なプレスを選択する方法を学びましょう。
ホットプレス加工の欠点は何ですか?製造プロセスにおける主な制約
生産性の低さ、高コスト、運用上の複雑さなど、ホットプレス加工の主な欠点を探り、それがあなたの用途に適しているかどうかを判断してください。
熱間等方圧加圧(Hip)処理された製品の魅力的な特性は何ですか?完璧な密度と優れた性能を実現
熱間等方圧加圧(HIP)がいかにして内部欠陥を除去し、ほぼ完璧な密度を生み出し、疲労抵抗、延性、信頼性を向上させるかをご覧ください。
熱間等方圧接(Hip)の利点は何ですか?比類のない材料の完全性と性能を実現
熱間等方圧接(HIP)が、金属部品や3Dプリント部品の内部空隙をなくし、疲労寿命を向上させ、均一な微細組織を生成する方法をご覧ください。
油圧プレス機の安全対策とは?職場での事故を防ぐための必須手順
油圧プレス機の操作に関する重要な安全対策(使用前点検、オペレーターの訓練、リスク軽減策など)を学び、安全な職場環境を確保しましょう。
油圧プレス機の利点は何ですか?比類のないパワー、精度、コスト効率
油圧プレス機の主な利点を発見してください:巨大な制御可能な力、優れた安全性、一貫した圧力、そしてコンパクトで費用対効果の高い設計。
油圧プレスは何トンまで耐えられますか?安全容量と最大容量の理解
油圧プレスの安全な動作容量(9.5トン)と絶対最大限界(15.2トン)の重要な違いを理解し、安全性と寿命を確保しましょう。
プレス粉末ペレット法とは?正確なFtirサンプル調製ガイド
KBrを用いたプレス粉末ペレット法が、透明で光透過性の固体サンプルを作成することで、いかに精密なFTIR分析を可能にするかを学びましょう。
油圧プレスは熱を発生させますか?意図的な熱源と意図的でない熱源の理解
油圧プレスが摩擦や圧縮から、成形や硬化プロセスのための意図的な加熱に至るまで、どのように熱を発生させるかを学びましょう。
油圧プレスを使用する際の安全規則は何ですか?安全な操作のための重要なガイドライン
油圧プレス操作の重要な安全規則を学びましょう。使用前の確認、荷重制限、事故防止のための一般的な危険などを含みます。
Hip材料プロセスとは何ですか?ほぼ完全な密度と信頼性を達成する
熱間等方圧プレス(HIP)が、高温と等方圧を用いて内部欠陥を除去し、材料特性を向上させる方法を学びましょう。
Ir分光法におけるKbrの使用目的とは?クリアで高分解能な固体試料分析を実現
KBrペレットがどのようにして、正確な透過測定のためのIR透過性マトリックスを提供し、固体試料の正確なIR分光分析を可能にするかをご覧ください。
なぜKbrペレットが使用されるのか?正確なFtir分析のための透明な窓の作成
KBrペレットがどのようにして、正確な分子分析のために赤外線透過性のマトリックスを作成し、固体サンプルのFTIR分光法を可能にするかをご覧ください。
油圧プレスシステムはどのように機能しますか?力の増幅の力を解き放つ
油圧プレスがパスカルの原理をどのように利用して、比類のない力と制御で材料の成形、破砕、鍛造のために力を増幅するかを発見してください。
ダイヤモンド焼結の最終段階でホットプレスが機械的圧力を加えなければならないのはなぜですか? 完全な緻密化を実現する
真空ホットプレス焼結において、気孔率を除去し、ダイヤモンド工具の弾性後作用を克服するために機械的圧力が不可欠である理由を学びましょう。
加硫機はどのように機能しますか?ゴム変形の技術を習得する
加硫機がどのように熱と圧力を使用して、生ゴムを耐久性のある弾性製品に変える化学反応を開始するかを発見してください。
熱間等方圧接(Hip)の用途は何ですか?高性能部品の材料完全性を最大化する
熱間等方圧接(HIP)が、金属、セラミックス、3Dプリント部品の気孔率を排除し、重要な用途における強度、耐久性、信頼性をどのように高めるかをご覧ください。
Uo2セラミックペレットに高トン数油圧プレスが必要なのはなぜですか?核燃料の密度に必要な本質的な力
UO2ペレットにとって高トン数油圧プレスが、グリーンボディの密度確立から高密度焼結の実現まで、いかに重要であるかを学びましょう。
Nio-Bczyyb製造における単軸油圧プレスの主な機能は何ですか?高密度グリーンボディの実現
単軸油圧プレスが粉末をNiO-BCZYYbグリーンボディにどのように圧密し、機械的完全性と電解質の高密度化を確保するかを学びましょう。
二次プレスに油圧プレスを使用する目的は何ですか?最適な密度を達成する
高圧油圧プレス(360 MPa以上)が、全固体電池の組み立てにおける空隙をなくし、界面抵抗を低減する方法を学びましょう。
Assbアセンブリに500 Mpaの油圧プレスが必要なのはなぜですか?最適な電解質密度と導電率を実現
固体電池における硫化物電解質のコールドプレスに500 MPaの圧力が不可欠である理由、抵抗の低減と気孔の除去について学びましょう。
Cal-Gpe界面の処理におけるホットプレスの役割とは?フレキシブルリチウム電池の性能最適化
ホットプレス処理が、フレキシブルバッテリー製造におけるボイドの除去、剥離の防止、リチウムデンドライトの抑制にどのように役立つかを学びましょう。
硫化物固态電解質ペレット形成における実験室用油圧プレスの役割は何ですか?密度を最大化する
実験室用油圧プレスが、高圧によってLi6PS5Clのような硫化物電解質のイオン伝導率と緻密化をどのように向上させるかを学びましょう。
実験室用油圧プレスは、ナトリウム系オキシ硫化物ガラスの室温圧力焼結にどのように貢献しますか?
高圧油圧プレスが、室温での機械的粘性流動により、高密度で透明な固体電解質をどのように実現するかを学びましょう。
全固体ポーチ型電池における温間静水圧プレス(Wip)の機能は何ですか?バッテリー密度を最適化する
温間静水圧プレス(WIP)がマイクロボイドを排除し、抵抗を低減して全固体電池の性能を向上させる方法をご覧ください。
固形電解質に実験室用油圧プレスが使用されるのはなぜですか?粒子接触と反応効率の最適化
実験室用油圧プレスが粒子接触を最大化し、拡散距離を短縮して、純粋で高密度の固形電解質を確保する方法を学びましょう。
200 Mpaの圧力を印加する目的は何ですか? Nzsp固体電解質グリーンボディの密度を最適化する
200 MPaの圧力が高密度のNZSPグリーンボディをどのように作成し、気孔率を低減し、最大のイオン伝導率と機械的強度を確保するかを学びましょう。
U字曲げ試験片の作製において、実験室用油圧プレス装置はどのような役割を果たしますか? Scc試験をマスターする
実験室用油圧プレスが、応力腐食割れ(SCC)評価および産業シミュレーションのために精密なU字曲げ試験片を作成する方法を学びましょう。
FtirでKbrペレットが使用されるのはなぜですか?クリアで正確な固体サンプル分析を実現
KBrペレットがFTIR分光法で赤外線透過性を提供し、固体サンプルの明確な分子分析を可能にする方法を学びましょう。
FtirにおけるKbrの使用法とは?正確な固体サンプル分析のための重要な技術
KBrペレットが、透明で希釈性のマトリックスとして固体粉末のFTIR分析をいかに可能にするか、また、湿気汚染などの一般的なエラーをいかに回避するかを学びましょう。
熱間静水圧プレス(Hip)市場の規模は?航空宇宙、医療、3Dプリンティングにおける成長ドライバー
航空宇宙、医療、積層造形(アディティブ・マニュファクチャリング)の需要に牽引される熱間静水圧プレス(HIP)市場の規模、主要な推進要因、将来の機会を探ります。
前へ
Page 4
次へ