あなたの研究室に高品質の機器と材料を提供する、信頼できる世界規模のサプライヤー!
について
ブログ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
製品
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
会社
私たちについて
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
サービスサポート
お問い合わせ
メニュー
メニューを閉じる
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
ブログ
について
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
よくある質問 -
エンジニアリング先進ファインセラミックス用精密加工ジルコニアセラミックボール
マグネシウム系合金廃棄物の水素製造における活性化において、遠心ボールミルの役割は何ですか?
遠心ボールミルが、格子歪みとメカニカルアロイングを通じて、高エネルギー衝撃を利用してマグネシウム廃棄物を反応性材料に変換する方法を学びましょう。
W-Cu含浸におけるジルコニアコーティングの主な目的は何ですか?高密度で空隙のない複合材料を確保すること
ジルコニアコーティングが非湿潤流動バリアとして機能し、ガス介在物を防ぎ、均一なW-Cu複合材料の含浸を保証する方法を学びましょう。
Agドープ硫化物固体電解質の合成における高エネルギー遊星ボールミルの具体的な役割は何ですか?
高エネルギー遊星ボールミルが、高伝導性Agドープ硫化物電解質のメカノケミカル合成と非晶質化をどのように促進するかをご覧ください。
Latpの準備において、高エネルギー遊星ボールミルはどのような役割を果たしますか?バッテリーのナノスケール効率を解き放つ
高エネルギー遊星ボールミルがLATPセラミックフィラーをナノスケールに微細化し、表面積とリチウムイオン伝導率を向上させる方法を学びましょう。
Mcpにおける高エネルギー遊星ボールミルの中心的な役割は何ですか?ナノスケール炭化物合成の効率を解き放つ
高エネルギー遊星ボールミルが、機械的活性化を通じて遷移金属炭化物ナノパウダーのメカノケミカル合成をどのように推進するかを学びましょう。
Spsにおける窒化ホウ素(Bn)絶縁シートの目的は何ですか?熱的焼結効果と電気的焼結効果の分離
ZrB2のような導電性セラミックスの焼結において、窒化ホウ素絶縁シートが熱放射と電流効果をどのように分離するかを学びましょう。
全固体電池におけるボールミル加工の主な機能は何ですか?均一な微細混合を実現する
ボールミル加工が、二重伝導ネットワークを形成し、界面インピーダンスを低減することで全固体電池の性能を最適化する方法を学びましょう。
Ti3Sic2反応粉末の調製におけるボールミリングプロセスの機能は何ですか?材料の均一性の達成
ボールミリングがいかにして均一性と安定したSHS合成のための均一な反応界面を確保し、高品質のTi3SiC2粉末を得るかをご覧ください。
Ods鋼における遊星ボールミルの主な機能は何ですか? 高エネルギーメカニカルアロイングをマスターする
遊星ボールミルがODSフェライト鋼粉末のメカニカルアロイングと均一な酸化物分散を可能にし、材料強度を向上させる方法を学びましょう。
セラミックが耐えられる最高温度は何度ですか?極度の高温性能ガイド
アルミナから炭化ケイ素まで、さまざまなセラミックの温度限界を発見し、高温用途に最適な材料の選び方を学びましょう。
どのようなコーティングが腐食を防ぎますか?高密度Pvdバリアで優れた保護を実現
窒化ジルコニウム(ZrN)のようなPVDコーティングが、どのようにして腐食を防ぐ不浸透性のバリアを作り出し、1200時間以上の塩水噴霧試験に耐えるかをご覧ください。
セラミックスは化学的に耐性がありますか?過酷な用途向けにその力を解き放つ
セラミックスが化学的に不活性である理由、その限界、そしてあなたの研究室や産業のニーズに合った適切な種類を選ぶ方法を発見してください。
Sicの熱膨張とは?その低いCteをマスターして優れた高温性能を実現
SiCの熱膨張係数(約4.0x10⁻⁶/°C)と、その低いCTEがいかに優れた耐熱衝撃性と安定性を可能にするかをご覧ください。
ボールミルはどのような原理に基づいていますか?効率的な粉砕のための衝撃と摩耗
ボールミルは、材料を微粉末に粉砕するために、衝撃と摩耗の原理に基づいて動作します。回転速度とメディアのサイズがプロセスにどのように影響するかを学びましょう。
焼結セラミックスとは?粉末を高性能材料へと変えるプロセス
焼結プロセスがいかにして、過酷な用途に対応する優れた機械的強度と熱安定性を持つ、強靭で耐久性のあるセラミック部品を製造するかを学びましょう。
高純度ジルコニアスリーブとワッシャーが必要な理由とは?Hthp応力腐食試験における精度を確保する
腐食試験における電気的絶縁とガルバニック干渉の防止に、高純度ジルコニアスリーブとワッシャーが不可欠である理由をご覧ください。
ボールミルはMofとガラスマトリックスの統合をどのように促進しますか?精密材料合成を実現
ボールミルが、制御された機械的エネルギーと微細な破砕を通じて、MOFとガラスマトリックスのナノスケール統合を可能にする方法を学びましょう。
ラボボールミルは、Phbv/パルプ繊維複合材料の特性をどのように変化させますか?
ボールミルが繊維のサイズと結晶性を低下させることで、PHBV/パルプ繊維複合材料の剛性、硬度、分散性を向上させる方法をご覧ください。
高温水素炉におけるプッシャープレートに高度に特殊化されたセラミックスが必要とされる複合的な要因は何ですか?
炉のプッシャープレートに特殊セラミックスが求められる理由を、極端な熱サイクル、機械的負荷、水素による化学的攻撃から解き明かしましょう。
粉砕された粒子とは何ですか?微粉末で材料の可能性を解き放つ
粉砕された粒子とは何か、それらがどのように表面積を増やし、反応を加速させ、そして関連する安全上のリスクについて学びましょう。
ボールミルにおける比率は何ですか?あなたの研究室に最適なボール・粉末比を見つける
粉砕プロセスにおいて、効率的な粒子径減少とメカニカルアロイングのために、ボール・粉末比(BPR)を計算し最適化する方法を発見してください。
リチウムイオン電池の電力を確認する方法は?充電レベルと電池の健全性の違いを把握する。
マルチメーターを使用してリチウムイオン電池の電圧をチェックする方法と、充電状態(SoC)と健全性状態(SoH)の重要な違いを理解する方法を学びましょう。
アルミナチューブの最高使用温度は?高純度でその真価を引き出す
アルミナチューブの最高使用温度(最大1800℃)を決定する主要因、特に純度に焦点を当て、高温用途におけるその可能性を発見してください。
アルミナの熱伝導率は?その独自の熱的・電気的特性に関するガイド
アルミナの熱伝導率(30~35 W/mK)、熱伝導体および電気絶縁体としての独自の役割、主要な用途について学びましょう。
セラミック鋳型鋳造のプロセスとは何ですか?複雑な部品の精密鋳造を実現する
高温合金に対応し、高品質な表面仕上げと厳しい公差を実現する精密プロセスである、セラミック鋳型鋳造の4つの工程について学びましょう。
研磨材としてのアルミナ粉末の特性と取り扱い上の注意点は何ですか?精密加工で完璧な仕上がりを実現
研磨用アルミナ粉末の重要な特性と、クロスコンタミネーションを防ぎ、安全を確保して完璧な表面仕上げを実現するための重要な取り扱い上の注意点について学びましょう。
グラフェン担持金属触媒に高エネルギーボールミル装置が利用されるのはなぜですか? 優れたメタン酸化
高エネルギーボールミルが単原子分散とメカノケミカル融合をどのように達成し、メタン酸化用の高活性触媒を作成するかを学びましょう。
プラネタリーボールミルの粉砕時間を制御することが不可欠なのはなぜですか?超微細Wc-10Coの品質管理をマスターする
粒子の微細化、酸化の防止、格子歪みの回避のバランスを取るために、超微細WC-10Coにとって精密な粉砕時間がなぜ重要なのかを学びましょう。
セラミックはどれくらいの高温に加熱できるか?陶器から先進材料による2700℃まで
セラミックの耐熱限界は大きく異なります。土器は1150℃でひび割れ、炭化ケイ素は2700℃に耐えます。あなたの熱的ニーズに合ったセラミックを見つけましょう。
炭化ケイ素と超硬合金のどちらが硬いですか?材料選択の鍵を発見する
炭化ケイ素の方が硬いですが、超硬合金の方が靭性が高いです。用途に応じて、硬度と靭性の重要な違いを学びましょう。
歯科用セラミックスの3つの種類とは?審美性と強度のバランスをとるためのガイド
ガラスベース、粒子充填、結晶性セラミックスについて学び、強度と審美性のために適切な材料を選択する方法を学びましょう。
炭化ケイ素の目的は何ですか?極度の熱、摩耗、エレクトロニクス用材料
炭化ケイ素(SiC)は、極度の耐熱性、機械的硬度、先進エレクトロニクスに使用される耐久性のあるセラミックおよび半導体です。
ボールミルとコロイドミルの違いは何ですか?プロセスに最適なミルを選びましょう
ボールミルは固体を粉末に粉砕するのに対し、コロイドミルは液体を安定したエマルションに均質化します。主な違いと用途を学びましょう。
ボールミル粉砕の欠点は何ですか?高エネルギー使用、汚染、処理の遅さ
ボールミルの主な欠点を探る:高いエネルギー消費、製品汚染のリスク、粉砕速度の遅さ、材料の制限。
ボールミル粉砕のメカニズムとは?完璧な粒度を実現するための衝撃と摩耗の理解
ボールミルが衝撃と摩耗を利用して材料を粉砕する仕組みを学びます。正確な粒度制御のための速度とメディアの役割を理解しましょう。
粉砕における粒度分布に影響を与える要因は?正確な制御のためのコアパラメータを習得する
粉砕メディアのサイズ、粉砕時間、回転速度が粒度分布と粉砕効率をどのように決定するかを学びましょう。
高温処理で犠牲的なLlzoブロックを使用するのはなぜですか?最高のパフォーマンスのためにリチウム損失を制御しましょう。
犠牲的なLLZOブロックが高温セラミック焼結中にリチウムの揮発を防ぎ、イオン伝導率を維持する方法を学びましょう。
アルカリ加水分解におけるPtfeライニングの機能とは?純粋なPetリサイクルと腐食保護を保証する
高温PETアルカリ加水分解中にPTFEライニングが腐食や金属イオンの溶出を防ぎ、モノマーの純度を確保する方法を学びましょう。
Cnt合成における高エネルギーボールミルの主な役割は何ですか? ナノコンポジットの最適な分散を実現する
高エネルギーボールミルがカーボンナノチューブを分散させ、ナノコンポジットの物理的結合を促進し、材料強度を向上させる方法を学びましょう。
Bzy20の調製におけるボールミル装置の主な機能は何ですか?セラミック焼結のSsrsを最適化する
ボールミルがBZY20セラミック前駆体を機械的に活性化・均質化し、固相反応焼結(SSRS)を効率化する方法をご覧ください。
Li2S–P2S5硫化物固相電解質の合成における遊星ボールミルの役割は何ですか?
高伝導性硫化物固相電解質のアモルファス化を促進するメカノケミカルリアクターとしての遊星ボールミルの役割を学びましょう。
Peoベース電解質の機械的混合にボールミルが使用されるのはなぜですか?溶媒フリーの純度と均一性を実現
ボールミルが溶媒フリーのPEO電解質準備をどのように可能にし、均一な塩分散を保証し、残留溶媒のリスクを排除するかを学びましょう。
Cu-Ti3Sic2混合におけるアルミナボールミルジャーの役割は何ですか?純度と均一性を確保する
高硬度アルミナ(コランダム)ジャーが、Cu-Ti3SiC2複合粉末混合における汚染を防ぎ、均一な分散を保証する方法を学びましょう。
ボールミルでFecralyを混合する際に、温度管理と高純度アルゴンガスを使用する必要があるのはなぜですか?
FeCrAlYとナノセラミックスの粉砕時に、酸化や熱損傷を防ぐために温度管理と高純度アルゴンが不可欠である理由を学びましょう。
Co-50質量%Cr合金における遊星ボールミルの役割とは?メカニカルアロイングとコールドウェルディングの習得
遊星ボールミルがCo-Cr合金のメカニカルアロイングとコールドウェルディングを可能にし、焼結中の優れた高密度化を保証する方法を学びましょう。
トップダウン合成における遊星ボールミルの役割は何ですか?ナノマテリアルの精製とスケーラビリティをマスターする
遊星ボールミルが、機械的衝撃を通じてバルク材料を高反応性ナノマテリアルに変換することにより、トップダウン合成をどのように推進するかを学びましょう。
Uo2-Beo燃料における高エネルギーボールミルの主な役割は何ですか?原子力発電のための均質化マスター
高エネルギーボールミルがUO2マトリックス中のBeOの均一な分散をどのように保証し、熱伝導率を最大化し、焼結欠陥を防ぐかを学びましょう。
Shsにおける遊星ボールミルの役割とは?優れた合金合成のための粉末活性化の最適化
遊星ボールミルが機械的活性化と粒子微細化を通じて自己伝播高温合成(SHS)を可能にする仕組みを学びましょう。
Cr50Cu50合金粉末の前処理におけるボールミルの主な機能は何ですか?優れた機械的合金化の達成
Cr50Cu50合金粉末の調製における材料の不適合性を克服するために、ボールミルが機械的合金化と冷間溶接をどのように利用するかを学びましょう。
ジルコニウム系アモルファス合金リボン製造における真空誘導溶解とメルトスピニングの連携方法とは?
真空誘導溶解とメルトスピニングが、酸化を防ぎ急冷速度を達成することでジルコニウムアモルファスリボンをどのように作成するかを学びましょう。
Llztoセラミックペレットプレスにおける高強度金型の役割とは?密度と構造的完全性の習得
高強度金型が均一な圧縮を可能にし、欠陥を防ぎ、LLZTO固体電解質の高いイオン伝導性を確保する方法を学びましょう。
Wc-Coの準備における遊星ボールミルの重要な役割は何ですか?高エネルギーメカニカルアロイングをマスターする
遊星ボールミルが高エネルギーの衝撃、塑性変形、サブミクロン粒子の微細化を通じてWC-Co粉末を精製する方法を学びましょう。
Sipプロセスにおけるボールミリング装置の具体的な役割は何ですか?Uhtcmcの含浸と均一性を向上させる
ボールミリングが、SIPプロセスにおける優れたUHTCMC製造のために、スラリーのレオロジー、解凝集、およびマイクロポア浸透をどのように最適化するかをご覧ください。
Latp合成における遊星ボールミルの機能とは?高性能固体電解質混合を実現する
高エネルギー湿式粉砕による均一性と粒子微細化が、純相LATP固体電解質にどのように不可欠であるかを学びましょう。
高エネルギー遊星ボールミルの主な機能は何ですか?Hea粉末のメカニカルアロイングの習得
FeCoCrNiMnTiC高エントロピー合金の調製における、メカニカルアロイングと原子レベル混合を促進する高エネルギー遊星ボールミルの仕組みを学びましょう。
窒化ケイ素(Si3N4)研磨材をボールミルに使用する利点は何ですか?Nite-Sicの純度を確保します。
化学的純度と微細構造の均一性に焦点を当て、NITE-SiCの調製に窒化ケイ素研磨材が不可欠である理由を発見してください。
Si2N2O合成におけるジルコニア繊維フェルトの役割とは?熱効率と電気安全性の確保
Si2N2Oセラミック合成において、ジルコニア繊維フェルトが熱および電気の両方の断熱材として機能し、エネルギー損失とショートを防ぐ方法を学びましょう。
硫化物固体電解質粉末の反応容器としてジルコニア製ボールミルジャーが好まれるのはなぜですか?高純度を確保する
硫化物電解質にジルコニア製ボールミルジャーが不可欠な理由、すなわち化学的不活性と金属汚染の防止について学びましょう。
Fe-Cr-Al Ods合金の準備における高エネルギー遊星ボールミルの機能は何ですか?ナノスケール分散を実現します。
高エネルギー遊星ボールミルが、高性能ODS合金のメカニカルアロイング、酸化物分散、ナノ構造微細化をどのように可能にするかをご覧ください。
Al2O3/Zro2セラミックスのコールドプレス成形における金属金型の機能は何ですか?精密成形を実現する
コールドプレス成形段階で、金属金型がセラミックグリーンボディの形成中にどのように幾何学的制約と機械的強度を提供するかを学びましょう。
Zrb2-Sicホットプレスに黒鉛型が必要な理由とは?高性能セラミック焼結を実現
ZrB2-SiC複合材料にとって黒鉛型が不可欠である理由を発見してください。2000℃までの熱安定性と導電性を提供します。
A356-Sicp混合における遊星ボールミルの具体的な役割は何ですか?複合材の均一分散を確保する。
遊星ボールミルがA356-SiCp複合材中のSiC凝集をどのように解消し、等方性機械特性と均一性を実現するかを学びましょう。
Al2O3-Ticn/Co-Ni複合材料における遊星ボールミルの機能は何ですか? 完璧な材料均質化を実現します。
遊星ボールミルがナノ粒子の凝集を解消し、Al2O3-TiCN/Co-Ni複合材料の前処理のために均一な分散を確保する方法を学びましょう。
ナノスケールセラミックフィラーの準備において、遊星ボールミルの役割は何ですか?固体電解質の最適化
遊星ボールミルがLATPとLLZOをナノスケールに微細化し、ポリマー結晶化を抑制して電解質のイオン伝導度を高める方法を学びましょう。
Ptfeベースのフロー反応プラットフォームは、どのような技術的利点を提供しますか?リグニンの解重合を95%高速化
PTFEベースのフロープラットフォームが、32分の反応時間と極端な耐薬品性(pH 0~14)でリグニンの解重合をどのように変革するかをご覧ください。
Rppo合成における遊星ボールミルの役割は何ですか?固相反応速度論をマスターする
高エネルギーの機械的力によって拡散障壁を克服することで、遊星ボールミルがRuddlesden–Popperペロブスカイト合成を可能にする方法を学びましょう。
カソード材料再生に遊星ボールミルを使用する目的は何ですか?原子レベルの混合を実現する
遊星ボールミルがメカニカルアロイングと微視的な均一性をどのように可能にし、カソード材料合成用の反応性前駆体を準備するかを学びましょう。
遊星ボールミルの欠点は何ですか?エネルギー、騒音、摩耗における主な欠点
遊星ボールミルの主な欠点を探る:高いエネルギー消費、運転時の騒音、粉砕媒体とジャーの急速な摩耗。
プラネタリーボールミルとは何ですか?先進材料のための高速・高エネルギー粉砕を実現
プラネタリーボールミルが、いかにして反対方向の回転を利用して高エネルギーの衝撃を発生させ、微粉砕、メカニカルアロイング、材料合成を実現するかを学びましょう。
ボールミルの特徴は何ですか?材料を超微粉砕する
ボールミルの主な特徴について学びましょう。衝撃と摩耗によるメカニズム、湿式/乾式粉砕の汎用性、研磨材の処理能力などが含まれます。
炭化ケイ素の抵抗率はどれくらいですか?0.1オーム・センチメートル未満から高抵抗まで、調整可能な特性です。
炭化ケイ素の抵抗率は固定されていません。ドーピング、製造、用途によって、導電性ヒーター(0.1オーム・センチメートル未満)から絶縁性窯道具まで、どのように定義されるかを学びましょう。
炭化ケイ素は耐熱性がありますか?極限温度下で優れた性能を発揮
炭化ケイ素(SiC)が2000°Cを超える融点、高い熱伝導率、優れた耐熱衝撃性により、なぜ極度の熱に優れているのかをご覧ください。
高周波ボールミルの役割とは?Uhmwpeと流紋岩フィラー複合材の調製をマスターする
高周波ボールミルが高強度機械混合によりUHMWPE複合材中のフィラーの均一な分布をどのように保証するかを学びましょう。
Ti-Fe合金におけるステンレス鋼粉砕球の目的:衝撃と充填率の最適化
Ti-Feマトリックス複合材料の高エネルギーメカニカルアロイングに、ステンレス鋼粉砕球と60%の充填率が不可欠である理由を学びましょう。
Cocrcufeni高エントロピー合金(Hea)粉末の調製における遊星ボールミルの役割は何ですか?機械的合金化効率のマスター
遊星ボールミルがCoCrCuFeNi高エントロピー合金(HEA)粉末の調製において、機械的合金化と微視的均一性をどのように促進するかを学びましょう。
Wc-10Coの準備におけるプラネタリー型ボールミルの主な機能は何ですか?サブミクロン材料の微細化
プラネタリーボールミルがWC-10Co粉末を0.1μmまで微細化し、均一なコバルトコーティングと超微細炭化物の焼結強化を保証する方法を学びましょう。
チタン複合材製造における真空ボールミルの機能とは?高純度粉末の前処理を実現
真空ボールミルが、酸化を防ぎながら反応性チタン粉末の高エネルギー混合を可能にし、優れた材料性能を実現する方法をご覧ください。
14%Cr Odsフェライト鋼の製造における遊星ボールミルの機能は何ですか?メカニカルアロイングの極意
遊星ボールミルがメカニカルアロイングと酸化物分散を可能にし、実験研究用の高性能14%Cr ODSフェライト鋼を作成する方法を学びましょう。
Ni–35Mo–15Crの調製における遊星ボールミルの主な機能は何ですか?合金品質と精製を強化する
遊星ボールミルが、優れた焼結結果のためにNi–35Mo–15Cr粉末のメカニカルアロイングと物理的精製をどのように可能にするかを学びましょう。
高エントロピー合金における機械的合金化装置の主な機能は何ですか?固相合成をマスターする
高エネルギーボールミルと結晶粒微細化によるナノ結晶高エントロピー合金の合成方法を学びましょう。
フェライト磁性流体の調製における機械式ボールミル装置の役割は何ですか?粒子径と安定性の最適化
機械式ボールミルがフェライト磁性流体の調製において、粒子の微細化とコスト効率の高い生産をどのように促進するかを学びましょう。
Loca実験で高純度アルミナロッドが使用されるのはなぜですか? 原子燃料ギャップと蒸気飢餓のシミュレーション
LOCA実験において、アルミナロッドが燃料ペレットの理想的な不活性シミュレーターである理由、および正確な蒸気飢餓と酸化試験を可能にする理由をご覧ください。
LatpやLagpのようなNasicon型固体電解質の調製において、遊星ボールミルの役割は何ですか?
遊星ボールミルがナノスケールでの微細化と機械的活性化を通じて、NASICON型固体電解質(LATP/LAGP)をどのように最適化するかをご覧ください。
セルロース系繊維くずの物理的前処理において、ボールミルおよび粉砕システムはなぜ不可欠なのですか?
ボールミルおよび粉砕が、セルロース系繊維くずの結晶性を低下させ、酵素効率を高めるために表面積を増大させることで、どのようにセルロース系繊維くずを変容させるかを学びましょう。
Tic/Ti生産における遊星ボールミルの機能とは?インサイチュ合成のための均質化の達成
高エネルギー均質化、解凝集、湿式粉砕技術によるTiC/Ti複合材生産を可能にする遊星ボールミルの仕組みを学びましょう。
正極スラリー調製における遊星ボールミルの役割とは?Lifepo4 & Ncm622の性能を最適化する
遊星ボールミルと高効率ミキサーが、導電ネットワークを構築し、粒子を微細化して、優れたLiFePO4およびNCM622正極を実現する方法を学びましょう。
Nvp/CおよびNzsp複合カソードの調製中にボールミルが使用されるのはなぜですか?全固体電池の調製を最適化する
ボールミルがNVP/CおよびNZSP複合体で密接な物理的接触と輸送チャネルをどのように作成し、界面インピーダンスを低減するかを学びましょう。
高エネルギー磁気ボールミリングの機能とは?Fe-Al粉末のナノスケール微細化を実現する
高エネルギー磁気ボールミリングがFe-Alのナノ結晶化、8nmへの結晶粒低減、格子歪みをどのように実現し、先端材料に貢献するかを学びましょう。
高エネルギー遊星ボールミルの中心的な役割は何ですか?硫化物全固体電解質合成の推進
高エネルギー遊星ボールミルがメカノケミカル合成と非晶質化を促進し、優れた硫化物全固体電解質を実現する方法を学びましょう。
Mo-La2O3合金化における高エネルギー遊星ボールミルの役割は何ですか?優れた微細構造制御を実現する
遊星ボールミルが、粒子の微細化、埋め込み、均一な酸化物分散を通じてMo-La2O3のメカニカルアロイングをどのように推進するかを学びましょう。
Lizr2(Po4)3の粉末合成において、手作業での粉砕よりも遊星ボールミルが好まれるのはなぜですか?高伝導性粉末の合成
LiZr2(PO4)3において遊星ボールミルが優れている理由を学びましょう。粒度削減、相安定性、材料の緻密化におけるその役割を発見しましょう。
全固体電池における遊星ボールミルの機能とは? 優れた固体-固体界面の構築
全固体電池の電極作製において、遊星ボールミルがいかにして重要なイオン/電子経路を生成し、界面を強化するかを学びましょう。
Ptfe製電気分解セルの保管時に注意すべき取り扱い上の注意点は何ですか?恒久的な変形を防ぐ
コールドフローや変形を避け、真空密閉性と長期耐久性を確保するために、PTFE製電気分解セルの重要な保管のヒントを学びましょう。
すべてのPtfe電解セルは、暴露してはならない化学物質はありますか?クリティカルリミットを知る
溶融アルカリ金属がすべてのPTFE電解セルにとって最大の脅威である理由と、材料の劣化や浸食を防ぐ方法を学びましょう。
異なる直径のステンレス鋼粉砕ボールが使用されるのはなぜですか? Cocrfenimn粉末の機械的合金化を最適化する
CoCrFeNiMn粉末合金化における高衝撃破砕と微細構造の微細化に、粉砕ボールの直径を混合することが不可欠な理由を学びましょう。
メカノケミカル合成におけるLi3PまたはLi3Nの合成において、ステンレス鋼のボールミルジャーとグラインディングボールの役割は何ですか?
室温で外部加熱なしでLi3PおよびLi3Nの合成を行うための運動エネルギーをステンレス鋼のボールミルジャーがどのように提供するかを学びましょう。
Ods鋼に高エネルギー機械的粉砕(Ma)装置が不可欠なのはなぜですか?ナノ酸化物分散を実現する
高エネルギーMA装置がODS鋼に不可欠な理由、ナノ酸化物分散、結晶粒微細化、優れた耐放射線性を可能にする理由を学びましょう。
Se-C電極作製におけるボールミリングプロセスの主な機能は何ですか?イオンと電子の輸送を最適化する
ボールミリングが機械的変形とコーティングを通じてパーコレーションネットワークを形成することにより、SE-C複合材料をどのように最適化するかを学びましょう。
高アルミナ(Al2O3)耐火物の一般的な特性は何ですか?高温耐性による性能向上
1800℃までの用途に対応する高アルミナ耐火物の機械的強度、化学的安定性、誘電特性をご覧ください。
Alsitiの研削において分析されたプロセスパラメータは何ですか?セラミック加工効率の最適化
砥石速度、テーブル送り、切り込み量がAlSiTi複合セラミックの研削性能と表面品質にどのように影響するかを発見してください。
前へ
Page 3
次へ