あなたの研究室に高品質の機器と材料を提供する、信頼できる世界規模のサプライヤー!
について
ブログ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
製品
サンプルの準備
静水圧プレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
ガラス素材
バイオ化学装置
ロータリーエバポレーター
ガラスリアクター
高圧反応器
短経路蒸留
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
知識
会社
私たちについて
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
サービスサポート
お問い合わせ
メニュー
メニューを閉じる
サンプルの準備
静水圧プレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
ガラス素材
バイオ化学装置
ロータリーエバポレーター
ガラスリアクター
高圧反応器
短経路蒸留
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
知識
ブログ
について
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
よくある質問 -
30L 加熱冷却サーキュレーター 高温低温恒温反応槽
温度制御とは?産業・科学用途に不可欠
産業用および科学用アプリケーションにおいて、温度制御がいかにプロセスを最適化し、安全性を確保し、効率を高めるかをご覧ください。
温度コントローラーとは?システムの精密温度調節
温度調節器の仕組み、主要部品、正確な温度調節のために校正が重要な理由をご紹介します。
温度制御システムの主な用途と利点は?
HVAC、冷凍、産業用アプリケーションにおいて、温度制御システムがどのように正確な調節、エネルギー効率、プロセスの安定性を確保しているかをご覧ください。
研究室はどのようにして正確な温度管理を維持しているのか?不可欠な方法と最新のソリューション
HVACシステム、断熱材、モニタリング、そして正確さと安全性のための専用機器によって、研究室がどのように正確な温度制御を実現しているかをご覧ください。
温度制御システムとは?あらゆる用途に対応する精度、効率、安全性
温度制御システムが、住宅、産業、科学的環境において、どのように正確な調節、エネルギー効率、安全性を確保するかを学びます。
マルチループ温度コントローラーとは?産業オートメーションの精密制御
マルチループ温度コントローラが産業オートメーションシステムの精度、柔軟性、効率をどのように向上させるかをご覧ください。
化学で温度を一定に保つには?重要な方法と最新の解決策
正確で再現性のある結果を得るために、化学の分野で温度を一定に保つ方法を、手動および最新の方法で学びます。
システム温度制御とは?正確で安定した温度調節を実現
システム温度制御が、光学、レーザー、工業プロセスなどの高感度アプリケーションの精密で安定した温度制御をどのように実現しているかをご覧ください。
反応温度を維持するには?一貫した化学プロセスに不可欠なヒント
安定した安全な結果を得るために、氷塩浴、ドライアイス浴、高度な冷却法を用いて反応温度を維持する方法を学ぶ。
アルミナに最適な加熱速度とは?性能と耐久性の最大化
均一な焼結を確保し、熱衝撃を防ぎ、材料の寿命を延ばすための、アルミナの推奨加熱・冷却速度をご覧ください。
センサーの主な種類とは?アクティブセンサー、パッシブセンサー、アナログセンサー、デジタルセンサーのガイド
アクティブ、パッシブ、アナログ、デジタルの4種類のセンサーと、その用途、利点、限界について学ぶ。
実験で温度を維持するには?最新の冷却ソリューションで正確性と再現性を確保する
アイスバスから高度なチリングサーキュレーターや冷凍システムまで、実験において正確な温度を維持するための最良の方法を学ぶ。
Ptfeが耐食性に理想的な素材である理由とは?その比類なき特性をご覧ください
PTFEの卓越した耐食性、熱安定性、低摩擦性、無毒性など、要求の厳しい産業用アプリケーションをご覧ください。
水性作動油の最高使用温度は?重要な洞察とベストプラクティス
水性作動油の使用温度範囲、性能に影響する要因、最適な状態を維持するための戦略をご覧ください。
焼き入れの温度範囲はどれくらいですか?金属の硬度を精密に最適化
最適な硬度と材料特性を実現するための、鋼、アルミニウム、チタンの理想的な焼入れ温度範囲について学びます。
研究室の温度を一定に保つには?精密制御のための最新技術を探る
アイスバスから先進的な冷却器、加熱炉、精度の高いデジタルプログラムまで、ラボの温度管理方法の進化をご覧ください。
ロータリーエバポレーターの最適温度は?効率と安全性の最大化
ロータリーエバポレーターの最適な温度範囲、効率性、安全性、ラボのプロセスに必要な溶媒固有の要件のバランスについてご紹介します。
温度を一定に保つには?以下の実証済みの戦略で、快適性とエネルギー効率を高めましょう。
断熱、HVACシステム、換気などで温度を一定に保ち、最適な快適性と省エネを実現する方法を学ぶ。
細菌培養器の温度は何度に保たれていますか?信頼できる結果を得るための細菌増殖の最適化
最適な細菌増殖、酵素活性、信頼性の高い実験結果を得るために、細菌培養器が35℃~37℃を維持する理由をご覧ください。
熱処理後の住宅の冷却時間は?主な要因
熱処理後の6~10時間の冷却期間、冷却時間に影響する要因、安全な再入場のコツについて学ぶ。
再生熱交換器とは?コンパクトな熱交換器によるエネルギー効率の向上
ガスタービン、スターリングエンジン、極低温システムにおけるエネルギー回収を強化する、熱を効率的に貯蔵・放出する再生装置の仕組みをご覧ください。
焼き入れの温度と時間はどのくらいですか?金属硬化を高精度で最適化
金属に望ましい機械的特性を実現するための最適な温度、時間、および急冷媒体について学びます。硬度と強度を効果的に高めます。
実験で温度を一定に保つには?実証済みの方法で正確な結果を保証する
ウォーターバス、インキュベーター、高度なモニタリングシステムを使って、実験温度を一定に保ち、信頼性の高い結果を得る方法を学びます。
真空炉に投資すべきか?メリット、用途、コストに関する洞察
精密な温度制御、均一な加熱、先端材料の低汚染性など、真空炉の利点をご覧ください。
炉における熱電対の役割とは?精度、安全性、耐久性の確保
熱電対がどのように精密な温度制御、安全機能、炉の耐久性を実現し、安定した性能を発揮しているかをご覧ください。
作動油が熱くなりすぎるとどうなりますか?システム障害とダウンタイムを回避する
作動油の過熱による劣化、効率の低下、システムの故障などのリスクをご覧ください。予防のヒントをご覧ください。
油圧システムの温度とは?性能と寿命の最適化
油圧システムの理想的な温度範囲(120°F~180°F)と、適切な温度管理が効率と耐久性をどのように高めるかを学びます。
最も正確な温度センサーを選ぶとき、なぜRtdを選ぶのか?精度、直線性、信頼性
RTDは、0.1℃の精度、優れた直線性、信頼性を提供し、研究室、産業、医療機器における精密な温度測定に最適です。
シングルループとマルチループコントローラー:お使いのシステムにはどちらが適していますか?
シングルループコントローラとマルチループコントローラの違い、アプリケーション、そしてお客様のシステムに最適なオプションの選び方をご紹介します。
標準的な油圧システムの作動温度は?最高の性能と寿命の確保
油圧システムの最適動作温度範囲(30℃~60℃)と、効率と安全のための維持方法を学びます。
油圧システムの最高温度は?最適な性能と寿命の確保
油圧システムの最高温度(82℃/180°F)と、効率と耐久性のために安全な運転限界を維持する方法をご覧ください。
デルタ20ルールとは?蒸発システムにおけるエネルギー効率の最適化
デルタ20ルールがどのように蒸発・凝縮システムのエネルギー効率を最適化し、高い性能と省エネを実現するかをご覧ください。
ロータリーエバポレーターの最適温度は?効率的で安全な溶剤蒸発のために
ロータリーエバポレーターの理想的な温度範囲(25℃~50℃)と、バンピングや熱劣化を防ぐコツをご紹介します。
ラボ用オーブンとラボ用炉:ラボのニーズにはどちらが適しているか?
実験用オーブンと実験用加熱炉の主な相違点(温度範囲、用途、コストなど)をご覧ください。
ツインチャンバー炉とは?そのユニークな設計と工業的用途
ツインチャンバー炉のデュアルチャンバー設計とメルトバスの共有により、焼結やアニールなどの工業プロセスがどのように最適化されるかをご覧ください。
研究室でのインキュベーターの一般的な使い方とは?細胞の成長と研究に不可欠
細胞増殖、微生物培養、分子生物学研究のために、ラボ用インキュベーターがどのように制御された環境を作り出しているかをご覧ください。主な用途をご紹介します。
インキュベーターはどのように熱を伝えるのか?均一な温度制御の主なメカニズム
細胞培養や卵の孵化などの用途に使用されるインキュベーターにおいて、伝導、対流、輻射がどのように安定した熱伝達を実現しているかをご覧ください。
ロータリーエバポレーターに最適なチラー温度とは?効率とサンプルの完全性の最大化
ロータリーエバポレーターに理想的なチラー温度を設定し、効率的な凝縮を実現し、サンプルの劣化を防ぐ方法をご紹介します。
ロータリーエバポレーションにおける20の法則とは?ラボの効率を最適化する
回転式蒸発における効率的な溶媒蒸発、コンデンサーの保護、エネルギー節約を確実にする20の法則をご覧ください。
熱処理における焼ならしとは?金属特性を精密に高める
焼ならしによって結晶粒組織を微細化し、内部応力を緩和することで、金属の延性、靭性、微細構造がどのように改善されるかをご覧ください。
タイプAとタイプBの圧縮継手の違いとは?ニーズに合った継手を選ぶ
タイプAとタイプBの圧縮継手の主な違い、取り付けプロセス、利点、理想的なアプリケーションを学びます。
熱容量の単位は?Si単位と非Si単位のガイド
SI単位(J/K)および非SI単位(cal/℃、BTU/°F)を含む熱容量の単位と、科学および工学におけるそれらの応用を発見する。
融点の単位は?セルシウスとケルビンの比較
融点の測定単位である摂氏 (°C) とケルビン (K)、および科学と産業におけるそれらの応用について学びます。
Thcは時間とともに劣化したり蒸発したりするのか?効能を保つための主な要因と保管の秘訣
光、熱、空気によるTHCの経時劣化について学び、大麻の効能と品質を維持するための保管のコツを発見する。
ロータリーエバポレーターにおけるエタノールの最適圧力は?効率的な蒸留の実現
ロータリーエバポレーターでエタノールを除去するための理想的な圧力と温度設定について学び、効率的で安定した結果を得ることができます。
ヒーターエレメントの不良を見分けるには?簡単に診断・交換
色や光り方を観察して故障したヒーター・エレメントを見分ける方法を学び、交換時期を見極めましょう。
発熱体はなぜ故障するのか?主な原因と長持ちさせるための予防策
ホットスポット、酸化、脆化、汚染など、発熱体が故障する理由をご覧ください。性能を長持ちさせるための予防のヒントをご覧ください。
3プレート金型のメリットとは?射出成形の効率アップ
センターゲート、マルチゲート、射出成形におけるコスト効率の高い設計など、3プレート金型の主な利点をご覧ください。
なぜカロメル電極が二次参照電極として使用されるのか?その利点と限界を知る
なぜカロメル電極が信頼できる二次参照電極なのか、その利点と、塩化銀のような代替品が好まれる理由を学びましょう。
固体乾燥剤システムの最適再生温度とは?効率と性能の最大化
エネルギー効率と水分除去のバランスをとりながら、固体乾燥剤システムに最適な再生温度(65℃~105℃)を発見してください。
回転炉床炉の構造とは?主要部品と用途の説明
回転炉床、耐火物ライニング、駆動機構などの主要部品を含む回転炉床炉の構造と、その工業的用途を探る。
実験室でよく使われる加熱器具とは?実験に適した道具を見つけよう
ブンゼンバーナー、ホットプレート、オーブンなど、ラボで使用する主な加熱器具を紹介し、ニーズに合った加熱器具の選び方を学びます。
なぜ誘導加熱は抵抗加熱より効率的なのか?主な利点をご覧ください
産業用および家庭用アプリケーションにおいて、誘導加熱が高効率、高速加熱、精密制御で抵抗加熱を凌駕する理由をご覧ください。
Smtアセンブリのリフロー温度は?高品質はんだ付けのための重要な洞察
SMTアセンブリに最適なリフロー温度(240~250℃)、それに影響する要因、高品質のはんだ接合を実現するためのヒントについてご紹介します。
回転炉の効率は?性能を最適化するための重要な洞察
回転炉の効率、性能に影響を与える要因、熱効率を高めてコストを削減するための新たなトレンドについてご紹介します。
発熱体はなぜ焼損するのか?主な原因と予防策
なぜ発熱体が焼損するのか、そして適切な材料の選択、メンテナンス、運転条件によってそれを防ぐ方法を学びます。
スパークプラズマ焼結(Sps)装置の価格は?主な要因と価格内訳
SPSシステムのコストは30万ドルから100万ドル以上であり、仕様、カスタマイズ、メンテナンスなど、価格に影響を与える要因について学ぶことができます。
最適な発熱体とは?用途に合った素材を選ぶ
温度、炉の雰囲気、コストから最適な発熱体を選択する方法をご覧ください。NiCr合金や炭化ケイ素などについてもご紹介します。
熱処理プロセスとは?材料特性向上の秘密を解き明かす
工業用途の材料強度、硬度、延性を向上させる熱処理工程の4つの重要なステップを学びます。
ヒーターエレメントのテスト方法診断と修理のためのステップ・バイ・ステップ・ガイド
マルチメータを使った発熱体のテスト方法をご紹介します。重要な手順、安全のためのヒント、正確な診断のための抵抗値の解釈方法をご覧ください。
冷間静水圧プレス(Cip)とは?常温粉末成形ガイド
常温で行う粉末成形プロセスである冷間静水圧プレス(CIP)について、その利点と用途をご紹介します。
ミキサーの主要部品とは?最適なパフォーマンスのための重要な洞察
効率的な運転と耐久性を確保するために、ミキシングチャンバー、ローター、冷却システムなど、ミキサーの重要な内部コンポーネントについて学びましょう。
ラボ用ミキサーとは?実験室での効率的な液体混合に不可欠なツール
ラボ用ボルテックスミキサーが、生物学、化学、臨床ラボにおいて、少量の液体を迅速、効率的、安定的に混合する方法をご覧ください。
2本ロールミルの欠点とは?主な限界と材料加工への影響
二本ロール粉砕機の欠点である、粉砕能力の制限や揮発性ロス、またそれらが原料の品質や処理効率に与える影響について探る。