あなたの研究室に高品質の機器と材料を提供する、信頼できる世界規模のサプライヤー!
について
ブログ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
製品
サンプルの準備
静水圧プレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
ガラス素材
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
会社
私たちについて
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
サービスサポート
お問い合わせ
メニュー
メニューを閉じる
サンプルの準備
静水圧プレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
ガラス素材
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
ブログ
について
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
よくある質問 -
50L 加熱冷却サーキュレーター 高温低温恒温反応槽
温度制御システムの主な用途と利点は?
HVAC、冷凍、産業用アプリケーションにおいて、温度制御システムがどのように正確な調節、エネルギー効率、プロセスの安定性を確保しているかをご覧ください。
温度制御システムとは?あらゆる用途に対応する精度、効率、安全性
温度制御システムが、住宅、産業、科学的環境において、どのように正確な調節、エネルギー効率、安全性を確保するかを学びます。
システム温度制御とは?正確で安定した温度調節を実現
システム温度制御が、光学、レーザー、工業プロセスなどの高感度アプリケーションの精密で安定した温度制御をどのように実現しているかをご覧ください。
化学で温度を一定に保つには?重要な方法と最新の解決策
正確で再現性のある結果を得るために、化学の分野で温度を一定に保つ方法を、手動および最新の方法で学びます。
温度を一定に保つには?以下の実証済みの戦略で、快適性とエネルギー効率を高めましょう。
断熱、HVACシステム、換気などで温度を一定に保ち、最適な快適性と省エネを実現する方法を学ぶ。
温度制御とは?産業・科学用途に不可欠
産業用および科学用アプリケーションにおいて、温度制御がいかにプロセスを最適化し、安全性を確保し、効率を高めるかをご覧ください。
研究室はどのようにして正確な温度管理を維持しているのか?不可欠な方法と最新のソリューション
HVACシステム、断熱材、モニタリング、そして正確さと安全性のための専用機器によって、研究室がどのように正確な温度制御を実現しているかをご覧ください。
ラボ用ヒーターとは?正確な温度制御のための必須機器
滅菌、サンプル前処理、化学反応に使用するラボ用ヒーターの目的、種類、用途をご紹介します。
実験で温度を一定に保つには?実証済みの方法で正確な結果を保証する
ウォーターバス、インキュベーター、高度なモニタリングシステムを使って、実験温度を一定に保ち、信頼性の高い結果を得る方法を学びます。
温度検出装置の主な5つのタイプとは?ニーズに合ったセンサーを見つける
熱電対、赤外線センサー、温度計、シリコンダイオード、RTD。それぞれの用途と利点を学びます。
油圧クーラーとは?油圧システムの性能を最適化する
産業用アプリケーションにおいて、油圧クーラーがどのように流体の温度を調整し、システム効率を向上させ、機器の寿命を延ばすかをご覧ください。
一般的にUltフリーザーを必要とする機関や施設のタイプは?サンプル保存に不可欠
ワクチン、血液製剤、研究用サンプルの超低温保存にULTフリーザーをご利用いただいている主な施設をご紹介します。
冷却速度に影響を与える要因とは?冷却プロセスを最適化し、効率を高める
温度差、熱伝導率、表面積、冷却媒体、断熱材が冷却速度にどのように影響するかをご覧ください。今すぐプロセスを最適化しましょう!
実験で温度を維持するには?最新の冷却ソリューションで正確性と再現性を確保する
アイスバスから高度なチリングサーキュレーターや冷凍システムまで、実験において正確な温度を維持するための最良の方法を学ぶ。
ラボ用オーブンとラボ用炉:ラボのニーズにはどちらが適しているか?
実験用オーブンと実験用加熱炉の主な相違点(温度範囲、用途、コストなど)をご覧ください。
シングルループとマルチループコントローラー:お使いのシステムにはどちらが適していますか?
シングルループコントローラとマルチループコントローラの違い、アプリケーション、そしてお客様のシステムに最適なオプションの選び方をご紹介します。
誘導コイルを冷却するにはどうすればよいですか?最適なパフォーマンスと寿命を確保
冷却誘導コイル、水ベースのシステム、炉の効率的かつ安全な運転のための設計上の考慮事項の重要性を学びます。
インキュベーターはどのように熱を伝えるのか?均一な温度制御の主なメカニズム
細胞培養や卵の孵化などの用途に使用されるインキュベーターにおいて、伝導、対流、輻射がどのように安定した熱伝達を実現しているかをご覧ください。
研究室の温度を一定に保つには?精密制御のための最新技術を探る
アイスバスから先進的な冷却器、加熱炉、精度の高いデジタルプログラムまで、ラボの温度管理方法の進化をご覧ください。
反応温度を維持するには?一貫した化学プロセスに不可欠なヒント
安定した安全な結果を得るために、氷塩浴、ドライアイス浴、高度な冷却法を用いて反応温度を維持する方法を学ぶ。
熱容量の単位は?Si単位と非Si単位のガイド
SI単位(J/K)および非SI単位(cal/℃、BTU/°F)を含む熱容量の単位と、科学および工学におけるそれらの応用を発見する。
ラボ用インキュベーターの主な用途とは?科学と研究における重要な用途
細胞培養から食品検査まで、ラボ用インキュベーターの5つの主な用途と、科学や産業の進歩におけるその役割をご紹介します。
細菌培養器の温度は何度に保たれていますか?信頼できる結果を得るための細菌増殖の最適化
最適な細菌増殖、酵素活性、信頼性の高い実験結果を得るために、細菌培養器が35℃~37℃を維持する理由をご覧ください。
研究室でのインキュベーターの一般的な使い方とは?細胞の成長と研究に不可欠
細胞増殖、微生物培養、分子生物学研究のために、ラボ用インキュベーターがどのように制御された環境を作り出しているかをご覧ください。主な用途をご紹介します。
油圧システムで発生する熱は何に吸収される?主な冷却メカニズムを解説
油圧システムが流体、熱交換器、設計を通してどのように熱を管理するかを学びます。適切な冷却で効率と寿命を保証します。
油圧システムを冷却する方法にはどのようなものがありますか?パフォーマンスを最適化し、過熱を防止
油圧システムのパッシブ、アクティブ、ハイブリッドの冷却方法を探求し、性能の向上、オーバーヒートの防止、コンポーネントの寿命延長を図る。
油圧システムの 2 種類の冷却システムは何ですか?ニーズに合った適切な冷却ソリューションを選択してください
油圧システムの空冷式と水冷式、それぞれの利点と限界、そしてアプリケーションに最適なオプションの選び方についてご紹介します。
油圧ポンプはどのように冷却されるのか?効果的な冷却方法で性能を最適化する
効率的な動作を確保し、過熱を防ぎ、寿命を延ばすために、パッシブおよびアクティブな方法を使用して油圧ポンプを冷却する方法を学びます。
センサーの主な種類とは?アクティブセンサー、パッシブセンサー、アナログセンサー、デジタルセンサーのガイド
アクティブ、パッシブ、アナログ、デジタルの4種類のセンサーと、その用途、利点、限界について学ぶ。
油圧システムの温度とは?性能と寿命の最適化
油圧システムの理想的な温度範囲(120°F~180°F)と、適切な温度管理が効率と耐久性をどのように高めるかを学びます。
対流は熱伝達においてどのような役割を果たしますか?流体内の効率的な熱分布を解き放つ
対流が伝導と流体の動きを組み合わせて、液体や気体の熱伝達効率を高める方法を学びましょう。アプリケーションとメカニズムを調べます。
回転炉床炉の構造とは?主要部品と用途の説明
回転炉床、耐火物ライニング、駆動機構などの主要部品を含む回転炉床炉の構造と、その工業的用途を探る。
なぜ誘導加熱は抵抗加熱より効率的なのか?主な利点をご覧ください
産業用および家庭用アプリケーションにおいて、誘導加熱が高効率、高速加熱、精密制御で抵抗加熱を凌駕する理由をご覧ください。
油圧作動油から熱を除去するものとは?油圧システムの効果的な冷却方法を知る
熱交換器、リザーバ設計、外部冷却システムがどのように作動油から熱を除去し、最適なシステム性能を確保するかを学びます。
反応器の温度はどのように制御されるのか?最適化学プロセスの主要メカニズム
効率的な化学プロセスを実現するために、加熱、冷却、攪拌の各機構がどのように連携し、反応器内の正確な温度制御を維持しているかを学ぶ。
油圧システムの高温はどのように制御されているのか?効率と安全性の確保
冷却メカニズム、作動油の選択、リアルタイムのモニタリングなど、油圧システムの高温を制御するための効果的な戦略を学ぶ。
油圧システムの冷却方法とは?性能の最適化とオーバーヒートの防止
空冷、水冷、熱交換器など、油圧システムの効果的な冷却方法を発見し、効率を高め、オーバーヒートを防止します。
コンデンサーとエバポレーターの違いとは?冷却システムにおける主な役割
コンデンサーとエバポレーターの決定的な違い、それぞれの役割、そして効率的な冷却システムを実現する方法について学びましょう。
実験室でよく使われる加熱器具とは?実験に適した道具を見つけよう
ブンゼンバーナー、ホットプレート、オーブンなど、ラボで使用する主な加熱器具を紹介し、ニーズに合った加熱器具の選び方を学びます。
ヒーターエレメントの不良を見分けるには?簡単に診断・交換
色や光り方を観察して故障したヒーター・エレメントを見分ける方法を学び、交換時期を見極めましょう。
発熱体はなぜ故障するのか?主な原因と長持ちさせるための予防策
ホットスポット、酸化、脆化、汚染など、発熱体が故障する理由をご覧ください。性能を長持ちさせるための予防のヒントをご覧ください。
熱処理後の住宅の冷却時間は?主な要因
熱処理後の6~10時間の冷却期間、冷却時間に影響する要因、安全な再入場のコツについて学ぶ。
超低温フリーザーにはどのような利点がありますか?信頼性の高い冷却で重要なサンプルを保護
超低温フリーザーがどのようにサンプルの完全性、エネルギー効率、およびラボやバイオバンクのコンプライアンスを保証するかをご覧ください。
なぜ超低温フリーザーは病院で評価されるのか?サンプルの完全性とワクチン保管に不可欠
ULTフリーザーが、ワクチンや生物学的サンプルの保存、そしてエネルギー効率に優れた安全な保管のために、病院で不可欠である理由をご覧ください。
超低温フリーザー(Ultフリーザー)はどのような温度範囲を維持しますか?ラボ保管のための必須ガイド
ULTフリーザーの温度範囲(-40℃~-196℃)、主な用途、ラボに適したモデルの選び方についてご紹介します。
発熱体はなぜ焼損するのか?主な原因と予防策
なぜ発熱体が焼損するのか、そして適切な材料の選択、メンテナンス、運転条件によってそれを防ぐ方法を学びます。
熱処理における焼ならしとは?金属特性を精密に高める
焼ならしによって結晶粒組織を微細化し、内部応力を緩和することで、金属の延性、靭性、微細構造がどのように改善されるかをご覧ください。
熱が油圧システムに与える影響ダウンタイムの防止と効率の向上
作動油の劣化からコンポーネントの摩耗に至るまで、過度の熱が油圧システムにどのような影響を与えるかを学び、最適な性能を維持するためのソリューションを発見してください。
Ih加熱のスピードは?Ihクッキングヒーターのスピードと効率性
IHヒーターは従来の方法よりも速く、わずか2分でお湯を沸かすことができます。効率的で正確、そして省エネな理由をご覧ください。
竪型管状炉とは高温用途の精密加熱
縦型管状炉が、熱処理、材料合成、化学分析などの精密な高温プロセスを、制御された環境でいかに可能にするかをご覧ください。
超低温フリーザーとは何ですか?研究室や医療現場での保管に不可欠
超低温フリーザーについて、生物学的サンプルの保存におけるその重要な役割と、代表的な動作範囲(-40℃~-86℃)についてご紹介します。
不活性化とは?産業用途における熱処理と火災安全のために不可欠なもの
熱処理や安全システムにおいて、窒素やアルゴンを使用した不活性化がどのように酸化を防ぎ、火災のリスクを低減するかをご紹介します。
超低温フリーザーはどこでよく使われていますか?医療・研究ラボに不可欠
医療、研究、産業における超低温フリーザーの重要な用途をご覧ください。
超低温フリーザーはどのような分野で使用されていますか?高感度サンプル保存に不可欠なアプリケーション
医療、研究、工業分野における生物学的および化学的サンプルの保存のための超低温フリーザーの重要な用途をご覧ください。
超低温フリーザーとその主な用途とは?研究室の保存に不可欠
超低温フリーザーについて、生物学的サンプルの保存における重要な役割、研究室やヘルスケアにおけるアプリケーションについてご紹介します。
超低温フリーザーは何に使う?バイオメディカルや医薬品の保管に不可欠
超低温フリーザーが、研究およびヘルスケアにおいて、生物学的サンプル、ワクチン、法医学的証拠を-45℃~-86℃でどのように保存するかをご覧ください。
超低温フリーザーが維持する温度範囲は?ラボ保管のための必須ガイド
超低温フリーザー(-40℃~-196℃)の温度範囲と、ワクチンや生物試料のようなデリケートなサンプルの保存方法についてご紹介します。
超低温(Ult)フリーザーは通常どのような温度範囲を維持しますか?ラボ保管のための必須ガイド
高感度サンプルやワクチンなどの保存に適したULTフリーザー(-40℃~-196℃)の標準および特殊な温度範囲についてご紹介します。
超低温フリーザーはどのようにして微生物サンプルの完全性を保証するのですか?
気密性、急速冷却、高度なセキュリティ機能を備えたULTフリーザーが、どのように微生物サンプルを保存しているかをご覧ください。
超低温フリーザーのエネルギー効率は?研究室節約のための主なイノベーション
高度な断熱、スマートな冷却、精密な温度制御で省エネを実現するULTのラボ用冷凍庫をご覧ください。
超低温フリーザーとは?ラボでのサンプル保存に欠かせない
超低温フリーザーがどのように生物学的および化学的サンプルを-86℃で保存し、研究およびヘルスケアのための長期的な生存可能性を確保しているかをご覧ください。
超低温フリーザーにおける断熱材の役割とは?サンプルの安全性とエネルギー効率の確保
超低温フリーザーの断熱材がどのように極低温を維持し、効率を高め、デリケートな生物サンプルを保護しているかをご覧ください。
超低温フリーザーはどのように保存検体のセキュリティを強化しますか?高度な保護で重要な検体を安全に
正確な温度管理、アクセス・セキュリティ、フェイルセーフ設計など、ULTフリーザーがどのように研究や公衆衛生のために検体を保護しているかをご覧ください。
超低温(Ult)フリーザーとは何ですか?研究室保管のための必須ガイド
ULTフリーザーについて、その温度範囲(-40℃~-86℃)、主な特長、研究室や医療用保管庫での用途についてご紹介します。
ラボにおける超低温(Ult)フリーザーの主な用途は?サンプルの完全性に不可欠
ULTフリーザーがどのように生体試料や医薬品などを-80℃~-86℃で保存し、研究やヘルスケアのための長期安定性を確保しているかをご覧ください。
凍結保存とは何か、超低温フリーザーはこのプロセスをどのように促進するのか?
超低温フリーザーがどのように凍結保存を可能にし、研究や医療用途に生物学的サンプルを保存しているかをご覧ください。
2013年のI2Sl会議でUlt冷凍機について発表された内容とは?持続可能な研究室運営に関する重要な洞察
I2SL 2013でのCDCのULTフリーザー温度調整が、サンプルの完全性を損なうことなく、ラボの持続可能性をどのように高めたかをご覧ください。
超低温冷凍庫を-80℃ではなく-70℃に設定するメリットとは?エネルギーを節約し、冷凍庫の寿命を延ばす
なぜ-70℃超低温フリーザーは、-80℃設定と比較してエネルギーを節約し、コストを削減し、サンプルの完全性を維持するのかをご覧ください。
超低温フリーザーの一般的な設計とは?ラボ保管ソリューションの最適化
直立型・チェスト型超低温フリーザーとその特徴、ラボのニーズに最適な設計の選び方をご紹介します。
超低温フリーザーを選ぶ際に考慮すべき要素とは?ラボのための必須ガイド
温度安定性、エネルギー効率、保管設計など、ラボで使用する超低温フリーザーを選ぶ際の重要な要素についてご紹介します。
超低温フリーザーの保存容量範囲とは?ラボとバイオバンクに不可欠
超低温フリーザーは200-800Lの保管が可能で、敏感なサンプルには-86℃を維持します。研究室や医療用保管に最適です。
超低温フリーザーの冷却システムはどのように機能するのか?ラボの効率化のための重要な洞察
超低温フリーザーがどのようにカスケード冷凍機と高度なコンポーネントを使用して、繊細なサンプルのために安定した氷点下条件を維持しているかをご覧ください。
従来のコールドウォール式超低温冷凍庫の限界とは?主な課題を解説
温度均一性の問題や回復時間の遅さなど、コールドウォール式超低温フリーザーの主な限界をご覧ください。
超低温冷凍庫の内部はどのように設計されているのか?主な特徴を解説
最適なサンプル保存のための棚、エアフロー、安全機能など、超低温フリーザーを支えるエンジニアリングをご覧ください。
微生物の-70℃保管に関する査読付き研究結果は?研究室の保管に関する重要な洞察
高い回収率、再現性、そしてほとんどの生物学的物質に対する最小限のリスク。
超低温フリーザーとは何ですか?ライフサイエンスと製薬に不可欠
超低温フリーザーが、研究、バイオバンク、ワクチン保存のために、-40℃~-86℃でデリケートな生物試料をどのように保存しているかをご覧ください。
凍結乾燥に適したサンプルの種類とは?凍結乾燥で品質を保つ
熱に敏感な生物製剤、医薬品、食品など、フリーズドライに最適なサンプルをご紹介します。
クライオミリングの仕組み プロセス、利点とアプリケーションの説明
クライオミリングがどのようにナノ構造の粉末を製造し、熱と酸化を抑制し、極低温環境で材料特性を向上させるかをご覧ください。
ラボ用凍結乾燥機は製薬業界にどのようなメリットをもたらしますか?効能の保持と保存期間の延長
ラボ用凍結乾燥機が医薬品の安定性、ワクチン保存、研究開発の効率をどのように高めるかをご覧ください。今すぐ主なメリットをご確認ください。
科学・薬局用冷凍庫はどのような温度範囲を管理するのか?研究室保管のための必須ガイド
研究室や薬局の冷凍庫の標準的な温度範囲(-10℃~-25℃)を学び、デリケートな材料を効果的に保存しましょう。
製薬やバイオテクノロジー産業における実験室での凍結乾燥の目的は何ですか?
実験室での凍結乾燥がどのように繊細な生物学的材料を保存し、保存性を高め、製薬やバイオテクノロジーにおける生物学的活性を維持するかをご覧ください。
凍結乾燥はバイオテクノロジーや化学の分野でどのように応用されていますか?重要なサンプルを正確に保存
生物学的活性の維持、純度の確保、スケーラビリティの向上により、凍結乾燥がバイオテクノロジーおよび化学プロセスをどのように強化するかをご覧ください。
二次乾燥段階で何が起こるのか?最適な水分除去のための主なステップ
二次乾燥段階で結合水を除去し、材料の安定性と長期保存に適した低残留水分(1~5%)を確保する方法をご覧ください。
実験室での凍結乾燥の主な利点は何ですか?繊細な材料を正確に保存
実験室での凍結乾燥が、熱に敏感な材料をどのように保存し、保存期間を延ばし、実験室や産業での再構成を容易にするかをご覧ください。
凍結乾燥は医薬品の保存期間をどのように延長しますか?効能と安定性を保つ
凍結乾燥がどのように水分を除去し、微生物の繁殖や化学的劣化を抑制し、医薬品の保存期間を何年も延ばすかをご覧ください。
凍結乾燥は医薬品にどのような物性向上をもたらしますか?安定性と効率の最適化
凍結乾燥が、熱に敏感な化合物を保存しながら、医薬品の安定性、保存期間、輸送効率をどのように向上させるかをご覧ください。
凍結乾燥における非晶質材料とは?最適処理のための重要な洞察
凍結乾燥における非晶質材料、そのユニークな特性、医薬品、バイオテクノロジー、食品保存のためのプロセスの最適化方法について学びます。
凍結乾燥の技術的定義とは?高度な凍結乾燥で品質を保つ
凍結乾燥(凍結乾燥)が、昇華によって繊細な物質の構造と機能をどのように保存するのか、医薬品や食品に理想的な方法をご紹介します。
凍結乾燥技術を使用して製造される一般的な医薬品の種類は?効能と安定性の維持
凍結乾燥(凍結乾燥)によってワクチン、タンパク質、抗体、医薬品がどのように保存され、安定性と保存期間の延長が保証されるかをご覧ください。
バイオテクノロジーにおける凍結乾燥機の意義とは?生命を救うイノベーションを守る
凍結乾燥機による生物学的材料の保存、研究の強化、凍結乾燥によるグローバルなバイオテクノロジーアプリケーションのサポートについてご覧ください。
研究室でのサンプル保存に凍結乾燥が重要なのはなぜか?
凍結乾燥が劣化を最小限に抑えてサンプルを保存し、研究室での長期的な安定性と使いやすさを保証する方法をご覧ください。
凍結乾燥はどのようにラボの研究をサポートしますか?長期研究のためのサンプルの保存
凍結乾燥が生物学的サンプルをどのように保存し、保存期間を延ばし、高度な研究技術をサポートするのかをご覧ください。
なぜフリーズドライは製品の保存期間を延ばすのか?完全性を保ち、劣化を防ぐ
凍結乾燥がどのように水分を除去して微生物の繁殖や化学的劣化を防ぎ、医薬品、食品、研究材料の長期安定性を確保するのかをご覧ください。
凍結乾燥における結晶質と非結晶質の違いとは?最適な結果を得るための重要な洞察
凍結乾燥における結晶質と非結晶質の挙動がどのように異なり、プロセスパラメータや最終製品の品質に影響を与えるかを理解する。
低温フリーザーの温度能力とは?信頼性の高い氷点下貯蔵ソリューション
低温フリーザー、その温度範囲(-25℃~-40℃)、調節可能なコントロール、研究室や医療用保管庫の理想的な用途についてご紹介します。
スペースが限られている研究室では、どのようなタイプの超低温フリーザーが利用できますか?研究室のためのコンパクトなソリューション
ベンチトップ型、アンダーカウンター型、直立型など、スペースの限られたラボに最適なULTフリーザーをご紹介します。
70℃で保存された血漿中のウイルス分析物の長期安定性は?バイオマーカーの確実な保存
抗HIV、抗HCV、HBsAgなどのウイルス分析物を-70℃で最長20年間保存し、診断と研究の信頼性を確保する方法をご覧ください。
ラボ用凍結乾燥機の選定においてメーカーの評判が重要な理由とは?ラボの品質と信頼性の確保
定評ある凍結乾燥機メーカーをお選びいただくことで、ラボの重要なアプリケーションの品質、革新性、信頼性の高いサポートが保証される理由をご覧ください。
超低温フリーザーを選ぶ際に考慮すべき機能とは?最適な性能を発揮するための主な要素
信頼性が高く、エネルギー効率に優れたサンプル保存のために超低温フリーザーを選択する際に評価すべき重要な機能をご覧ください。
クライオミルとは?
クライオミルの利点より速い粉砕、コンタミの減少、その他