あなたの研究室に高品質の機器と材料を提供する、信頼できる世界規模のサプライヤー!
について
ブログ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
製品
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
会社
私たちについて
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
サービスサポート
お問い合わせ
メニュー
メニューを閉じる
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
ブログ
について
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
よくある質問 -
エンジニアリング先進ファインセラミックス用精密加工イットリウム安定化ジルコニアセラミックロッド
平板腐食電解槽を使用する際の重要な安全および操作上の注意事項は何ですか?安全で正確な電気化学試験を確実に実施するために
平板腐食セルを使用する際の、PPEとシーリングからパラメーター制御、廃棄物処理に至るまでの必須の安全プロトコルと操作手順を学びましょう。
研磨工程の一般的な手順と注意すべき点は何ですか?欠陥のない電極表面を実現する
汚染を避け、データの完全性を確保するための重要な注意点を含め、電極を鏡面仕上げにするための段階的な手順を学びましょう。
腐食性の化学薬品を使用する際に、サンプルホルダーの腐食を防ぐにはどうすればよいですか?研究室の完全性を守りましょう
戦略的な材料選定と規律ある洗浄手順により、サンプルホルダーの腐食を防ぎ、実験の純度を確保する方法を学びましょう。
磁場はどのように金属を加熱するのですか?誘導加熱で精密な温度制御を実現
誘導加熱が交流磁場を利用して渦電流とヒステリシスを発生させ、研究室や産業界で金属を精密かつ効率的に加熱する方法を学びましょう。
平板腐食電解セルを用いた実験中に必要な手順と観察事項は何ですか?3段階メソッドを習得する
平板腐食セル実験における、準備から解体までの重要な手順を学び、正確で再現性のある電気化学データを確実に取得しましょう。
フラットプレート腐食電気分解セルの一般的な用途は何ですか?材料試験と研究を加速する
金属合金、保護コーティングの加速試験、電気化学的研究におけるフラットプレート腐食セルの使用方法を学びましょう。
インフレーションフィルムの要素とは?高品質フィルム生産のための主要コンポーネントをマスターする
押出機から巻取装置まで、インフレーションフィルムラインの不可欠な要素と、それらがどのように連携して耐久性のある一貫したプラスチックフィルムを製造するかを学びましょう。
銅フォームは何に使われるのか?その高性能な熱およびエネルギー用途ガイド
熱管理、エネルギー貯蔵、触媒における銅フォームの用途を探る。そのユニークな3D構造がどのように熱伝達と効率を高めるかを学ぶ。
プレス型(石膏型)の使い方:一貫性のある陶器の形をマスターする
粘土板の準備から、きれいで均一な結果を得るための型からの外し方まで、陶器のプレス成形に不可欠な手順を学びましょう。
セラミックヒーターはどのように違うのでしょうか?自己制御の安全性と効率性を発見する
セラミックヒーターがPTC技術をどのように利用して自動的な熱調整を行い、個人の空間で安全性とエネルギー効率を向上させるかをご覧ください。
熱は引張強度にどのように影響しますか?強度と延性のトレードオフを理解する
温度上昇が引張強度を低下させ、延性を向上させる仕組み、および高温用途向けの材料の選択方法を学びます。
ナノテクノロジーにおける電気化学的堆積とは何ですか?ナノ構造を構築するための低コストな手法
電気化学的堆積が電流を用いてナノワイヤーや薄膜を成長させる方法、およびそれが費用対効果の高い多用途なナノファブリケーションソリューションであることを学びましょう。
イオンビームスパッタリングの欠点は何ですか?その運用上の限界に関するガイド
イオンビームスパッタリングの主な欠点(低い成膜速度、限られた面積範囲、高い装置コストなど)を探ります。
ダイヤモンド中の微量元素の測定が非常に困難なのはなぜか?純度とマトリックスの課題を克服する
炭素マトリックスの干渉から汚染リスクに至るまで、ダイヤモンド中の微量元素測定における分析上の障害を発見し、最適な技術を学びましょう。
Xrfはどこで使われている?非破壊元素分析の応用ガイド
金属製造や鉱業から美術品保存、環境安全まで、XRF分析の産業と応用を発見してください。
Xrfにおける誤差の原因は何ですか?マスターサンプル、装置、およびメソッド管理
XRFの誤差の3つの主要な原因(サンプル効果、装置のドリフト、キャリブレーション)について学びましょう。精度と信頼性のために分析を最適化します。
Ftir分析を行う際に取るべき予防措置は何ですか?信頼性の高い分光結果を得るための必須ステップ
機器の保護、正確なサンプル分析の保証、および信頼性の高いデータを取得するための大気干渉の管理に関する重要なFTIRの注意事項を学びましょう。
Xrf分析の範囲は?ナトリウムからウランまで、%からPpmまで
XRF分析の全元素および濃度範囲を発見してください。ナトリウムからウランまで、主要成分から微量PPMレベルまでをカバーします。
元素分析の標準とは?正確でトレーサブルな結果を得るためのガイド
適切な元素分析技術(ICP-MS、ICP-OES、XRF)の選び方と、正確で信頼性の高い結果を得るための認証標準物質の使用方法を学びましょう。
元素分析には何が使われますか?迅速で非破壊的な材料試験のためのXrf
元素分析のための主要な非破壊技術である蛍光X線分析(XRF)についてご紹介します。その仕組み、主な強み、および限界について学びましょう。
スクリュープレス鍛造とは?高精度なニアネットシェイプ金属部品を実現
スクリュープレス鍛造は、フライホイール駆動のスクリューを使用して、制御された高エネルギーの打撃を与え、精密で複雑な金属成形を行います。ニアネットシェイプ部品に最適です。
前へ
Page 3
次へ