あなたの研究室に高品質の機器と材料を提供する、信頼できる世界規模のサプライヤー!
について
ブログ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
製品
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
会社
私たちについて
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
サービスサポート
お問い合わせ
メニュー
メニューを閉じる
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
ブログ
について
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
よくある質問 -
メッシュベルト式ガス雰囲気炉
精密ホットプレスは、Tlbr半導体結晶検出器の性能をどのように確保しますか?ピーク精度を達成する
熱機械的カップリングによるTlBr結晶の最適化により、優れた電荷収集とエネルギー分解能を実現する方法を学びましょう。
マイクロ波電子サイクロトロン共鳴プラズマ強化化学気相成長法(Mwecr-Pecvd)とは何ですか? | Kintek
MWECR-PECVDが、マイクロ波エネルギーと磁場を利用して低温で高密度プラズマ堆積を実現し、優れた薄膜を形成する方法をご覧ください。
バーンアウトキルンとは?鋳造のための精密金型準備ガイド
ロータリーキルンとバーンアウトキルンの機能の違いを学びましょう。バーンアウトキルンが宝飾品、歯科、航空宇宙産業におけるインベストメント鋳造でどのように使用されるかを発見してください。
熱分解は自立可能か?エネルギー正味の廃棄物変換を達成する方法
スマートな設計と原料の選択を通じて、熱分解システムがいかにエネルギー自立性を達成できるかを学びましょう。正味エネルギー収支をプラスにするための重要な要素を発見してください。
熱分解に必要な設備は何ですか?成功するプラントのための4つのコアコンポーネント
熱分解の必須設備である反応器、供給、加熱、凝縮システムについて学びましょう。プロジェクトに応じたバッチ式と連続式のセットアップを理解してください。
油圧システムのメンテナンスには何が必要ですか?高額な故障を防ぐためのプロアクティブガイド
油圧システムの信頼性と稼働時間を最大化するための、流体管理、ろ過、コンポーネント検査、温度制御という4つの柱について学びましょう。
バイオ炭生産施設の費用はいくらですか?プロジェクトには10万ドルから1000万ドル以上
バイオ炭施設の費用は10万ドル未満から1000万ドル以上に及びます。CAPEX、OPEX、および規模に応じた技術選択のような主要な要因を学びましょう。
ロータリーキルン焼却炉の主な種類とは何ですか?廃棄物ストリームに最適な設計を見つける
効率と廃棄物分解を特定の用途に合わせて最適化するために、4つの主要なロータリーキルン焼却炉のタイプと流れ構成を比較します。
亜臨界水反応システムは、どのようにして選択的分離を実現しますか? Kintekでバイオマス自己加水分解をマスターしましょう
亜臨界水システムが、温度とイオン積を使用して、ヘミセルロースをセルロースやリグニンから選択的に分離する方法を学びましょう。
Cu-Mo合金の調製における高エネルギーボールミルの主な機能は何ですか?不混和合金における原子混合の達成
メカニカルアロイングと原子レベルの混合を通じて、高エネルギーボールミルが熱力学的障壁を克服してCu-Mo合金を作成する方法を学びましょう。
実験室用ホットプレスはTlbr結晶の品質にどのように影響しますか?高密度半導体製造をマスターする
実験室用ホットプレスが、高密度化と配向を通じて臭化タリウム(TlBr)結晶を最適化し、優れた放射線検出を実現する方法を学びましょう。
表面前処理およびポリジメチルシロキサン(Pdms)コーティング中の無線周波数(Rf)電極の冷却システムが重要なのはなぜですか?
PDMSコーティングにおけるアクティブRF電極冷却が、熱分解を防ぎ高品質な表面改質を確保するために不可欠である理由をご覧ください。
材料科学におけるプラズマとは?多用途な材料加工ツールとしての役割を理解する
プラズマの独自の電離状態と電磁応答性が、現代の材料科学および産業加工の基盤となっている理由を学びましょう。
全固体リチウム硫黄電池の組み立てにおいて、グローブボックスはどのような役割を果たしますか?高純度セルの確保
グローブボックスが硫化物電解質とリチウムアノードを湿気や酸素から保護し、高性能な全固体電池の組み立てを保証する方法を学びましょう。
垂直Cvdにおいて、ウェーハの高速回転はなぜ必要なのでしょうか? 4H-Sic薄膜のためのマスターフローエンジニアリング
安定した境界層を形成し、均一な4H-SiCエピタキシャル成長を保証するために、垂直CVDリアクタで毎分1000回転が重要である理由を学びましょう。
実験室の電気化学的陽極酸化セットアップは、どのようにして二酸化チタンナノチューブの制御された成長を実現しますか?
高度な生体医療用チタンインプラント向けのTiO2ナノチューブの制御された成長を可能にする、精密な電力と電解質化学について学びましょう。
金ナノ粒子ヒドロゲル合成におけるUlt冷却装置の役割とは?精密なナノ構造のエンジニアリング
超低温(ULT)冷却装置が凍結融解サイクルを使用して、金ナノ粒子ヒドロゲルの多孔質構造をどのように作成するかを学びましょう。
フリーズドライヤーにおいて、棚の温度均一性と平面度が重要であるのはなぜですか?製品の品質とプロセスの効率を確保するため
フリーズドライヤーの棚の温度均一性と平面度が、製品の崩壊を防ぎ、一貫した乾燥を保証し、信頼性の高い結果を得るためのサイクル時間を最適化する方法を学びましょう。
熱分解プラントの費用はいくらですか?3万ドルから1,000万ドル以上までの総投資額を理解する
熱分解プラントの費用は3万ドルから1,000万ドル以上に及びます。規模、原料、自動化、環境規制が最終価格をどのように左右するかを学びましょう。
従来の保存方法が生物学的製剤にとって不向きなのはなぜですか?有効性と安全性に対する重大なリスク
熱や凍結などの従来の保存方法が、デリケートな生物学的製剤をどのように損傷させ、機能の喪失や危険な免疫応答を引き起こすのかを学びましょう。
なぜ凍結乾燥機は生物学および化学実験において不可欠とされるのでしょうか?正確な結果を得るためのサンプル完全性の維持
凍結乾燥が、デリケートな実験における長期保存、輸送、分析のために、生物学的活性と材料構造をどのように維持するかをご覧ください。
共押出成形と二重押出成形は同じものですか?マルチマテリアルのプラスチックプロファイルの力を解き放つ
共押出成形が、硬質プラスチックと柔軟なシール材などの材料を1つのプロセスで組み合わせて、コスト削減と優れた部品性能を実現する方法を学びましょう。
レーザー焼結はどこで使われていますか?航空宇宙から医療用インプラントまで
航空宇宙、医療、自動車、産業製造において、レーザー焼結がどのように複雑で耐久性のあるカスタム部品の作成に使用されているかを探ります。
レーザー焼結で何が作れますか?複雑で耐久性のある機能部品を作成
レーザー焼結がいかにして、金型費用なしで複雑なプロトタイプ、最終使用部品、医療機器、航空宇宙部品を製造するかを発見してください。
プラスチック熱分解生成物の用途は?廃プラスチックを燃料と原材料に変える
熱分解油を燃料に、合成ガスをエネルギーに、カーボンブラックを産業に利用するプラスチック熱分解生成物の用途を発見しましょう。廃棄物から価値を生み出すためのガイド。
プラスチック廃棄物の熱分解の利点は何ですか?廃棄物を燃料に変え、埋立量を削減する
プラスチックの熱分解がどのようにして廃棄物を貴重な燃料、油、炭に変換し、埋立地の利用を減らし、リサイクルできないプラスチックを処理するかをご覧ください。
プラスチック熱分解の目的は何ですか?廃プラスチックを貴重な資源に転換する
プラスチック熱分解が、リサイクル不可能な廃棄物を熱分解油、燃料、化学物質に変え、循環経済を可能にし、埋立地の利用を削減する方法を学びましょう。
プラスチックを燃料として利用する方法とは?熱分解と光改質で廃棄物をエネルギーに変える
熱分解と光改質が、廃プラスチックを原油や水素などの燃料に変換する方法を学びましょう。手法、適切なプラスチック、トレードオフを探ります。
プラスチック熱分解の有効性とは?廃棄物から価値を生み出す可能性を解き明かす
プラスチック熱分解の有効性を探る:オイル収率とエネルギー収支から、廃棄物管理における経済的実現可能性、主要な運用上の課題まで。
前へ
Page 17
次へ