あなたの研究室に高品質の機器と材料を提供する、信頼できる世界規模のサプライヤー!
について
ブログ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
製品
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
会社
私たちについて
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
サービスサポート
お問い合わせ
メニュー
メニューを閉じる
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
ブログ
について
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
よくある質問 -
エンジニアリング先進ファインセラミックス用精密加工窒化ケイ素(Sin)セラミックシート
研磨工程の一般的な手順と注意すべき点は何ですか?欠陥のない電極表面を実現する
汚染を避け、データの完全性を確保するための重要な注意点を含め、電極を鏡面仕上げにするための段階的な手順を学びましょう。
腐食性電解質を取り扱うために必要なPpeと環境制御とは?完全安全ガイド
実験室の安全を確保するために、ヒュームフード、手袋、ゴーグルなど、腐食性電解質を取り扱う上で不可欠なPPEと環境制御について学びましょう。
白金電極を使用する上での主要な環境的制限は何ですか?腐食を防ぐためにリチウムを避けること
白金電極をリチウムに接触させてはならない理由、および信頼性の高い電気化学的結果を得るために他の汚染物質や物理的損傷を管理する方法を学びましょう。
金シートの主要な性能特性と用途は何ですか?クリティカルなアプリケーション向けに究極の信頼性を解き放つ
金シートの主要な特性を探る:高い導電性、赤外線反射率、そして要求の厳しいエレクトロニクス、航空宇宙、医療用途における化学的不活性。
金ディスク電極の主な注意事項は何ですか?正確な結果と長寿命を確保するために
信頼性の高い電気化学データを取得し、電極の寿命を最大化するために、金ディスク電極の取り扱い、洗浄、操作に関する重要な注意事項を学びましょう。
金ディスク電極を長期使用のために維持するにはどうすればよいですか?一貫した性能のためのガイド
何年にもわたって信頼性の高い電気化学データを提供するために、金ディスク電極の必須の洗浄、研磨、保管プロトコルを学びましょう。
薄膜の厚さはどれくらいですか?ナノメートルからマイクロメートルまで、機能を引き出す
薄膜の厚さは原子層からマイクロメートルまでと幅広く、高度な用途向けの独自の光学的、電子的、機械的特性を決定します。
ブローフィルムと押出フィルムの違いは何ですか?パッケージングのニーズに合った適切なフィルムを選びましょう
ブローフィルムとキャスト押出フィルムの主な違いを学びましょう。ブローフィルムは優れた靭性を提供し、キャストフィルムは優れた透明性と均一性を提供します。
不活性ガスの危険性とは?窒息という静かな脅威を理解する
窒素やアルゴンなどの不活性ガスの隠れた危険性、すなわち酸素置換による急速な窒息と、再酸素化時の火災リスクについて学びましょう。
化学溶液堆積法は別名で何と呼ばれていますか?薄膜のためのゾル-ゲルプロセスを発見する
化学溶液堆積法(CSD)がなぜゾル-ゲル法と呼ばれるのか、そして精密な薄膜材料を作成する上でのその利点について学びましょう。
粉砕ボールの材質とは?鋼鉄、セラミック、および材料選択のガイド
鋼合金やセラミックなどの粉砕ボールの材料について学びましょう。鉱業、セメント、製薬用途における硬度、靭性、純度を比較します。
ふるい分け試験の名称は何ですか?ふるい分け分析で材料の秘密を解き明かす
骨材、土、粉末などの材料の粒度分布を決定するための標準的な粒度試験である、ふるい分け分析を発見してください。
薄膜技術の再生可能エネルギーにおける用途は何ですか?太陽電池パネルを超えて、エネルギー貯蔵と水素へ
薄膜技術が太陽電池パネル、全固体電池、熱電変換、グリーン水素製造をどのように支え、持続可能なエネルギーの未来を築いているかを探ります。
ナノ材料の電着プロセスとは?精密なナノスケールコーティングを実現
電着がいかにして薄膜やナノワイヤーのようなナノ材料を、厚さと形態を精密に制御して生成するかを学びましょう。導電性表面に最適です。
膜厚均一性とは?一貫した性能と高い歩留まりを実現
半導体および光学アプリケーションにおいて、膜厚均一性がデバイスの予測可能な性能と製造歩留まりにとってなぜ重要なのかを学びましょう。
腐食防止のためにコーティングを施すよりも、ステンレス鋼を使用する方が優れているのはなぜですか?自己修復性を備えた耐久性をご覧ください
ステンレス鋼の自己修復性パッシブ層が、表面コーティングと比較して優れた耐食性を提供する理由を学びましょう。耐久性、メンテナンス、コスト効率を比較します。
極めて精密に制御された薄膜を成膜する方法の1つは何ですか?ナノメートル精度を実現する原子層堆積(Ald)
原子層堆積(ALD)がどのようにして薄膜の原子レベル制御を達成し、半導体やナノテクノロジーにおいて完璧な均一性とコンフォーマル性を可能にするかをご覧ください。
薄膜の産業における応用とは?製品のための高度な表面工学を解き放つ
薄膜技術がどのようにエレクトロニクス、光学、医療機器、太陽エネルギーを可能にするかを探ります。表面特性を向上させ、イノベーションを推進する方法を学びましょう。
薄膜技術の成膜方法にはどのようなものがありますか?Pvd、Cvd、Aldのガイド
薄膜成膜法であるPVD、CVD、ALDを探求します。それぞれの違い、応用、半導体、光学、コーティングに最適な技術の選び方を学びましょう。
テクノロジーを使ってプラスチック廃棄物を削減するにはどうすればよいですか?Ai、ケミカルリサイクル、バイオプラスチックを活用する
AIを活用した選別、ケミカルリサイクル、バイオプラスチックを探求し、プラスチック廃棄物を削減します。テクノロジーがどのように循環経済を可能にするかを学びましょう。
不活性ガス凝縮法の利点は何ですか?研究用の高純度ナノ粒子の製造
高度な研究のために、超高純度でサイズ調整可能、かつ凝集の少ないナノ粒子を製造するための不活性ガス凝縮(IGC)の主な利点を発見してください。
モリブデン鋼の用途は何ですか?過酷な条件下で優れた性能を発揮
モリブデン鋼が、エネルギー、航空宇宙などの要求の厳しい用途で、どのように強化された強度、耐熱性、耐食性を提供するのかをご覧ください。
硬化できない鋼とは?炭素とオーステナイト組織の役割を理解する
低炭素鋼や304および316のようなオーステナイト系ステンレス鋼が、なぜ従来の熱処理方法では硬化できないのかを学びましょう。
歯科用ポーセレンの強度とは?耐久性と審美性に関するガイド
歯科用ポーセレンの組成と特性、硬度、脆性、クラウンやベニアへの理想的な応用について探ります。
前へ
Page 2
次へ