あなたの研究室に高品質の機器と材料を提供する、信頼できる世界規模のサプライヤー!
について
ブログ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
製品
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
会社
私たちについて
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
サービスサポート
お問い合わせ
メニュー
メニューを閉じる
サンプルの準備
静水圧プレス
真空加熱ラボプレス
手動ラボプレス
電気ラボプレス
手動加熱ラボプレス
自動加熱ラボプレス
カスタマー・メイド・プレス
金型と付属品
粉砕機
ふるい機
フライス加工装置
錠剤打抜機
ゴム加工機
マウンティングマシン
熱機器
MPCVD
回転炉
真空炉
真空アクセサリー
CVDおよびPECVD炉
真空ホットプレス炉
雰囲気炉
管状炉
歯科用炉
マッフル炉
電気式ロータリーキルン
熱要素
黒鉛化炉
ラボ用消耗品と材料
電気化学消耗品
薄膜蒸着部品
光学材料
ファインセラミックス
電池材料
PTFE素材
CVD材料
バイオ化学装置
高圧反応器
冷却サーキュレーター&ヒーターサーキュレーター
真空ポンプとコールドトラップチラー
滅菌装置
ホモジナイザー
振とう・混合装置
実験室用凍結乾燥機&冷凍庫
知識
ブログ
について
お客様の声
国際的な存在感
証明書と賞状
人事
お問い合わせ
日本語
English
Español
Deutsch
Français
Русский
日本語
한국인
Português
Italiano
اَلْعَرَبِيَّةُ
中文
よくある質問 -
ラボ用自動油圧ペレットプレス機
コールドシンタリングプロセス(Csp)装置の利点は何ですか? 300°C未満でセラミック/ポリマー複合材料に革命を起こす
コールドシンタリングプロセス(CSP)装置が、油圧を利用して低温でセラミック/ポリマー複合材料の緻密化を可能にする方法をご覧ください。
Al-Ti Cold Press Moldingに実験用油圧プレスが使用されるのはなぜですか? 完璧な焼結の主要ステップ
実験用油圧プレスがAl-Ti粉末のグリーンビレットを作成し、熱間プレス焼結前の最適な密度と安定性を確保する方法を学びましょう。
Ftir分析のためにKbrサンプルをどのように準備しますか?クリアな分析のためのテクニックを習得しましょう
FTIR用の透明なKBrペレットを作成するためのステップバイステップガイド。湿気を避け、適切な混合を確保し、高品質のスペクトルを得る方法を学びましょう。
実験室用油圧プレスは、固体腐食防止剤サンプルの準備にどのように使用されますか?サンプル準備の専門家ガイド
TGA、XRD、硬度試験のために腐食防止剤サンプルを標準化する実験室用油圧プレスの使用方法を、精密な密度管理とともに学びましょう。
Xrfサンプリング法とは何ですか?適切なサンプル調製で正確な元素分析を実現
XRFサンプリングがどのように機能するかを学びましょう。実験室での精度を高めるプレス成形ペレットの作成から、迅速なハンドヘルド分析まで。信頼性の高い結果を保証します。
Lzpグリーンペレットに127 Mpaの圧力が求められる理由:高密度固体電解質性能の解明
LZPペレットにとって127 MPaが、グリーン密度を最大化し、気孔率をなくし、固体電解質における高いイオン伝導性を確保するために不可欠である理由を学びましょう。
実験室用油圧プレスは、全固体電池の作製にどのように貢献しますか?密度とイオン伝導率の向上
実験室用油圧プレスが、全固体電池の作製において、気孔率を除去し、界面抵抗を低減する方法を学びましょう。
硫化物系全固体電池試験セルの組み立てにおける、実験用油圧プレスの機能は何ですか?
実験用油圧プレスが硫化物電解質を緻密化し、イオン伝導率を高め、全固体電池のデンドライトを防止する方法を学びましょう。
500 Mpaの実験室用油圧プレスを使用する主な目的は何ですか?全固体電池の密度を最適化する
全固体電池の組み立てにおいて500 MPaが重要である理由を、電解質の高密度化と粒界抵抗の低減に焦点を当てて学びましょう。
実験室用油圧プレスは、貯留層の安定性に関するデータサポートをどのように提供しますか? 化学的刺激のリスクを定量化する
実験室用油圧プレスがUCSとヤング率を測定し、化学的刺激が貯留層岩石の安定性に与える影響を評価する方法を学びましょう。
融解ビーズとプレス成形ペレットの違いは何ですか?最適なXrfサンプル前処理方法を選択する
融解ビーズはXRF分析において優れた精度を提供しますが、プレス成形ペレットはより迅速で安価です。研究室のワークフローを最適化するためのトレードオフを学びましょう。
Xrfのサンプルにはどのような種類がありますか?マスター固形物、粉末、液体の調製
3つの主要なXRFサンプルタイプ(固体、粉末、液体)と、適切な調製が正確で信頼性の高い元素分析結果を保証する方法を学びましょう。
油圧プレスの機能とは?材料の成形と加工のための強力なソリューション
油圧プレスがパスカルの原理をどのように利用して力を増幅し、優れた制御とパワーで材料のプレス、粉砕、成形を行うかをご覧ください。
Mpcf/Alのホットプレス焼結における油圧プレス圧制御システムのメカニズムとは?
油圧制御が酸化膜を破壊し、繊維を損傷せずに高密度化を実現することで、MPCF/Al複合材料を最適化する方法を学びましょう。
固体電池電解質層の作製において、実験用油圧プレスはどのような機能を持っていますか?
実験用油圧プレスが電解質粉末を緻密で導電性の高い層に変える仕組み、すなわち多孔質性や粒界を排除する方法を学びましょう。
コールドプレス中の実験室用油圧プレスはどのような役割を果たしますか? 真空熱間プレス結果の最適化
実験室用油圧プレスが、真空熱間プレス中にグリーンコンパクトを作成し、閉じ込められた空気を排出し、焼結効率を向上させる方法を学びましょう。
実験室用油圧プレスは、ナトリウム電池の固体電解質層の性能をどのように確保しますか?
実験室用油圧プレスが、高密度化、抵抗の低減、デンドライトの防止を通じて固体電解質性能を最適化する方法を学びましょう。
炭素繊維強化炭素複合材料(C/C複合材料)の実験用油圧プレスには、どのような主な機能がありますか?ピーク密度達成
実験用油圧プレスといそスタット装置が、C/C複合材料製造における密度向上と構造的完全性をどのように促進するかをご覧ください。
実験室用油圧プレスを使用する主な目的は何ですか?アルミニウムマトリックス複合材の調製を最適化する
実験室用油圧プレスが、ばらばらの粉末を高密度な「グリーンボディ」に変える仕組みを学び、高性能複合材の製造に不可欠なステップを理解しましょう。
なぜ高精度な温度制御加熱炉を使用する必要があるのですか?天然繊維の完全性を確保する。
天然繊維複合材料において、劣化、炭化、構造的欠陥を防ぐために精密な温度制御がなぜ重要なのかを学びましょう。
Nfpc作製において、実験室用油圧プレスはどのように製品の品質を保証しますか?優れた複合材料強度を実現する
実験室用油圧プレスが、精密な圧力制御、空隙の低減、均一な繊維分布を通じてNFPCの品質を最適化する方法をご覧ください。
Lgps電解質製造における実験室用油圧プレスの役割は何ですか?Ssbのコールドプレスをマスターする
実験室用油圧プレスがLGPS電解質のコールドプレス焼結を可能にし、リチウムイオン電池の導電率を向上させる方法を学びましょう。
油圧プレスは、何に基づいて構築されていますか?パスカルの法則の力の解き明かし
油圧プレスがどのようにパスカルの法則に基づいて構築され、シリンダー、ポンプ、フレームなどの主要コンポーネントを使用して流体圧で巨大な力を発生させるかを発見してください。
油圧プレスの利点は何ですか?高出力、精密制御、費用対効果
油圧プレスの主な利点を発見してください:産業および実験室用途における巨大な力発生、精密な制御、過負荷保護、および費用対効果。
Ir分光法におけるKbrの試料調製における利点は何ですか?クリーンで正確なスペクトルを実現する
KBrがIR分光法で好ましいマトリックスである理由を発見してください。幅広いIR透過性、ペレット形成の容易さ、信頼性の高い結果を提供します。
チタン合金のコールドプレスに実験室用油圧プレスが必要なのはなぜですか?高密度焼結の鍵
部品の完全性を確保するために、真空熱間プレス前にチタン粉末を安定化するために油圧プレスを使用した予備圧縮が不可欠である理由を学びましょう。
Xrf分析用のプレスペレットの作成プロセスとは?高品質なサンプル前処理で精度を達成
正確で信頼性の高い材料分析のために、粉砕、結合、高圧圧縮の3ステップのXRFプレスペレット作成プロセスを学びましょう。
油圧プレスは、バイポーラ全固体電池の組み立てをどのように容易にしますか?セル密度とイオンフローを向上させる
実験室用油圧プレスによる高い一軸圧力が、全固体電池の空隙をなくし、界面抵抗を低減する方法を学びましょう。
実験室用油圧プレスは、Nasicon電解質の低温高密度化にどのように貢献しますか?Cspマスター
高圧高密度化によるNaSICON電解質のコールドシンタリングプロセス(CSP)を可能にする実験室用油圧プレスについて学びましょう。
Assbアセンブリにおいて、精密な段階的圧力制御が必要なのはなぜですか?高性能バッテリーの完全性を確保する
亀裂を防ぎ、イオン輸送を最適化するために、全固体電池(ASSB)の油圧プレスにおける段階的圧力制御がなぜ不可欠なのかを学びましょう。
硫化物系固体電解質にコールドアイソスタティックプレス(Cip)が選ばれる理由とは?イオン伝導度を最大化する
CIPが硫化物系固体電解質ペレットに不可欠である理由を学びましょう。CIPは等方圧力を提供し、空隙をなくしてイオン伝導度を高めます。
実験室用油圧プレスは、フライアッシュ複合材料サンプルの準備にどのように貢献しますか?精密プレス
実験室用油圧プレスが、フライアッシュマイクロ球体複合材料の空隙をなくし、均一な密度を確保して正確な材料試験を行う方法をご覧ください。
L-プロリンサンプルの調製における実験室用メカニカルプレスとステンレス鋼モールドの機能は何ですか?
KINTEKのメカニカルプレスとステンレス鋼モールドがL-プロリン粉末を安定した平坦なディスクに変換し、一貫したプラズマ処理を実現する方法をご覧ください。
油圧プレスを定格以上に酷使することは可能か?重大なリスクと結果を理解する
油圧プレスを過負荷にすることの深刻な危険性(機器の損傷から壊滅的な故障まで)と、安全に操作する方法を学びましょう。
実験室用油圧プレスとPeekモールドはどのように連携して動作しますか?硫化物固体電解質の作製
油圧プレスとPEEKモールドがどのように連携して、結晶粒界抵抗を低減することで高密度の硫化物電解質層を作成するかを学びましょう。
油圧プレスはどのようにして(Wc + B4C)P/6063Alの熱間押出を促進しますか?複合材料の微細化
高トン数油圧プレスがせん断変形をどのように駆動して(WC + B4C)p/6063Al複合材料を微細化し、気孔や凝集物を除去するかを学びましょう。
油圧プレスにかかる力とは?巨大な圧縮力を活用する
油圧プレスがパスカルの原理を利用して、鍛造、プレス加工、精密成形用途でいかに巨大な圧縮力を生み出すかをご覧ください。
固体フッ化物イオン電池試験ユニットの組み立てにおいて、実験室用油圧プレスはどのような役割を果たしますか?主な利点
実験室用油圧プレスが、粉末の高密度化、抵抗の低減、界面接触の確保を通じて固体電池の試験を可能にする方法をご覧ください。
汚染された電解質の固化を検証するために油圧プレスはどのように使用されますか? 17〜26 Mpaの安全コンプライアンスを確保してください。
油圧プレスが規制遵守と環境安全を確保するために、廃棄物固化体の圧縮強度をどのように定量化するかを学びましょう。
油圧プレスを自作するにはどれくらいの費用がかかりますか?パワーと安全性を考慮した予算編成のためのDiyガイド
鋼製フレームや油圧システムの費用から、隠れた工具や安全上の考慮事項まで、油圧プレスを自作する真のコストを学びましょう。
油圧プレス機の安全対策とは?職場での事故を防ぐための必須手順
油圧プレス機の操作に関する重要な安全対策(使用前点検、オペレーターの訓練、リスク軽減策など)を学び、安全な職場環境を確保しましょう。
プレス機の利点は何ですか?生産のために比類のない力と一貫性を実現
プレス機の主な利点、すなわち高い精度、再現性、コスト削減、材料の成形、加工、接合における効率性をご覧ください。
ペレットの特性に影響を与える要因は何ですか?優れた品質を実現するための3つの主要分野を習得する
原料、プロセスパラメーター、ペレットミルダイの仕様がどのように相互作用してペレットの密度、耐久性、生産効率を決定するかを学びます。
油圧プレスを使用する際の安全規則は何ですか?安全な操作のための重要なガイドライン
油圧プレス操作の重要な安全規則を学びましょう。使用前の確認、荷重制限、事故防止のための一般的な危険などを含みます。
油圧プレスは熱を発生させますか?意図的な熱源と意図的でない熱源の理解
油圧プレスが摩擦や圧縮から、成形や硬化プロセスのための意図的な加熱に至るまで、どのように熱を発生させるかを学びましょう。
高トン数実験室油圧プレスはどのような機能を持っていますか?セメント分析のための不可欠なサンプル前処理
高トン数実験室油圧プレスが空隙率を排除し、セメント標本の機械的試験の精度を確保するために均一な密度を保証する方法を学びましょう。
実験室用油圧プレスは、ナトリウム系オキシ硫化物ガラスの室温圧力焼結にどのように貢献しますか?
高圧油圧プレスが、室温での機械的粘性流動により、高密度で透明な固体電解質をどのように実現するかを学びましょう。
三層複合固体電解質の作製において、実験用油圧プレスはどのような役割を果たしますか?
実験用油圧プレスが、層の緻密化とデンドライト成長の抑制によって三層固体電解質を最適化する方法をご覧ください。
ジルコニウム合金スクラップのリサイクルにおいて、実験室用油圧プレスはどのように役立ちますか?安定した消耗電極を作成する
実験室用油圧プレスとカスタム角型モールドが、ジルコニウムスクラップをVAR溶解プロセス用の安定した消耗電極にどのように変換するかをご覧ください。
全固体電池複合電極の性能評価において、実験室用油圧プレスはどのような役割を果たしますか?
実験室用油圧プレスが固体-固体接触を確立し、細孔をなくして正確な固体電池電極試験を行う方法をご覧ください。
赤外分光法における粉末サンプルの一般的な測定方法は何ですか?Ftir分析を最適化しましょう
赤外分光法のためのKBrペレット、ヌジョール法、拡散反射法、ATR法をマスターしましょう。粉末サンプルに最適な方法を選択してください。
Tlbrのホットプレスには、なぜ高荷重の実験用油圧プレスが必要なのですか?放射線検出器を最適化する
TlBr半導体の高密度化に高荷重油圧プレスと温度制御が不可欠である理由を学び、優れた放射線検出を実現しましょう。
高圧実験室油圧プレスは、Mgo-C耐火物グリーン体の成形品質をどのように確保しますか?
高圧油圧プレスが、密度を最大化し構造欠陥を排除することで、MgO-C耐火物の成形品質をどのように向上させるかをご覧ください。
実験室用高圧油圧プレスが硫酸カルシウム硬石膏に不可欠な理由は何ですか?均一なグリーン密度を実現する
350 MPaの高圧油圧プレスが、硫酸カルシウム硬石膏バイオセラミックグリーン体の多孔質性を排除し、均一な密度を確保する方法を学びましょう。
自動精密炉はZr1Nbの構造進化にどのように影響しますか?水素化と多角化のマスター
自動精密温度制御が、水素拡散と格子緩和を管理することでZr1Nb合金を安定させる方法をご覧ください。
リチウム空気電池の空気極形成における実験用油圧プレスの具体的な用途は何ですか?
実験用油圧プレスが触媒を電流コレクタに接合して高性能リチウム空気電池電極を作成する方法を学びましょう。
神経インプラント製造における実験用油圧プレスはどのように応用されていますか?神経電極のための精密工具
実験用油圧プレスが粉末材料を高密度化し、高精度で信頼性の高い神経インプラントの電極部品を成形する方法をご覧ください。
電極の圧縮に研磨鋼型を備えた油圧プレスを使用する目的は何ですか?バッテリー性能の向上
油圧プレスと研磨鋼型が電極シートを緻密化し、抵抗を低減して体積エネルギー密度を高める方法を学びましょう。
Sic/Al-Zn-Mg-Cu押出における油圧プレスの主な機能は何ですか?材料変形の習得
油圧プレスが酸化膜を破壊し、粒子を整列させ、機械的特性を向上させることで、SiC/Al-Zn-Mg-Cu複合材料を最適化する方法を学びましょう。
加熱された実験室用油圧プレスは、Cspにおける緻密化をどのように促進しますか?MgドープNasiconの焼結を最適化する
加熱された油圧プレスが、MgドープNASICONのコールドシンタリング(CSP)を、高圧・低温で最大の緻密化を実現するように可能にする方法を学びましょう。
Li7P2S8I0.5Cl0.5の使用におけるホットプレスの利点は何ですか?精密な高密度化による導電率の向上
Li7P2S8I0.5Cl0.5電解質をホットプレスすることで、コールドプレス法と比較してイオン伝導率が2倍になり、欠陥が解消される仕組みをご覧ください。
電解質高密度化に実験室用油圧プレスが必要な理由とは?高性能全固体電池の実現
抵抗を低減し、リチウムデンドライトの侵入を抑制するために、全固体電解質を高密度化する上で実験室用油圧プレスがいかに不可欠であるかをご覧ください。
実験室用油圧プレスは、G-Cnt電極作製にどのように貢献しますか?材料の高密度化を極める
実験室用油圧プレスが、密度と電気伝導率を最適化することで、生の状態のg-CNTを高性能電極に変える方法を学びましょう。
実験室用油圧プレスは、全固体電池の電解質層にどのように貢献しますか?ピーク密度を達成する
実験室用油圧プレスが、粉末の高密度化と界面接着を通じて、全固体電池のイオン伝導性をどのように向上させるかを学びましょう。
バイオマス分析における実験室用油圧プレスの機能は何ですか?精密ペレット調製を実現する
実験室用油圧プレスがバイオマス粉末を高密度ペレットに変換し、FTIRおよびXRF分析におけるデータエラーを排除する方法を学びましょう。
油圧プレスはどれくらいの圧力を発生させることができますか?ワークショップ向けに最大15トンの力を発生させる
400バールの圧力が15トンの力にどのように変換されるかを発見してください。用途に応じた圧力と力の違いを学びましょう。
油圧プレスは何トンまで耐えられますか?安全容量と最大容量の理解
油圧プレスの安全な動作容量(9.5トン)と絶対最大限界(15.2トン)の重要な違いを理解し、安全性と寿命を確保しましょう。
油圧プレスにはどのようなPpeが必要ですか?高圧作業に不可欠な安全装備
油圧プレスの安全に必要なPPE(フェイスシールド、白衣、手袋など)を学び、破砕、飛散、化学物質の危険から身を守りましょう。
実験室用油圧プレスは、酸化物セラミックバルク材料の品質をどのように確保しますか?精密な圧縮を実現
精密な実験室用油圧プレスが、均一な圧縮、気孔率の低減、応力制御を通じて酸化物セラミックの品質を最適化する方法を学びましょう。
実験室用油圧プレスは、標準化された多孔質セラミック基板の準備にどのように役立ちますか? Precision Prep
実験室用油圧プレスが、精密な緻密化を通じて、ポリマー電解質研究用の標準化されたセラミックグリーンボディをどのように作成するかをご覧ください。
Assbアセンブリに実験室用油圧プレスが使用されるのはなぜですか?最適な全固体電池密度を実現するための392 Mpaの達成
高圧油圧プレスが全固体電池(ASSB)の空隙をなくし、界面インピーダンスを低減して最高のパフォーマンスを実現する方法をご覧ください。
Fatt50の研究において油圧プレスが必要とされるのはなぜですか?粒度微細化と衝撃靭性のための精密機器
実験室用油圧プレスが、精密な粒度微細化と塑性変形によりFATT50を低下させ、材料の衝撃靭性を向上させる仕組みを学びましょう。
Xrf分析におけるプレスペレットのサンプル調製レシピを設計する際に考慮すべき5つの重要な要素は何ですか?
ペレット調製のための5つの重要な変数(粒度、結合剤の選択、希釈、圧力、厚さ)でXRF分析を最適化しましょう。
Cspにおける実験用加熱油圧プレスの中核機能は何ですか?低温セラミック焼結に革命を起こす
加熱油圧プレスが、メカノケミカルカップリングと高圧焼結を通じて、低温焼結プロセス(CSP)をどのように推進するかを学びましょう。
断熱材の成形に真空吸引システムを備えた実験用油圧プレスが使用されるのはなぜですか?調べてみましょう!
油圧プレスにおける真空吸引システムが、ひび割れを防ぎ、断熱材グリーンボディの成形時に繊維配向を確保する方法を学びましょう。
配合飼料工場で使用される機械は何ですか?高品質な飼料生産のための完全なシステムを発見する
飼料工場では、粉砕機、ミキサー、ペレットミルが統合されたシステムを使用しています。各機械がどのように機能し、バランスの取れた消化しやすい動物飼料を生産するのかを学びましょう。
実験室用油圧プレスまたはコールド等方圧プレスを使用する目的は何ですか?電解質品質の最適化
油圧プレスと等方圧プレスが、ばらばらの粉末を安定した「グリーンボディ」にどのように変換し、優れた複合電解質性能を実現するかを学びましょう。
ダイヤモンドソーブレードの製造における室温プレスに油圧プレスが使用されるのはなぜですか?主な利点
油圧プレスがどのようにして高強度のグリーンボディを作成し、ダイヤモンドソーブレード製造における重要な焼結を促進するかをご覧ください。
複合カソードの緻密化において、卓上ホットプレスはどのような役割を果たしますか?熱機械的フローで多孔性を10%未満に達成
加熱されたプラテンと高圧が、固体電解質中の空隙を除去し導電性を向上させるための可塑流をどのように可能にするかを学びましょう。
実験室用油圧プレスによって提供される高圧は、固体電池セルの形成にどのように影響しますか?
高圧油圧プレスがいかに多孔質性を排除し、界面抵抗を低減して高性能固体電池を製造するかを学びましょう。
炭化チタンの油圧成形における圧力安定性の重要性とは?材料の完全性を確保する
実験室用油圧プレスにおける圧力安定性が、欠陥を防ぎ、炭化チタン複合材料の均一な密度を確保する方法を学びましょう。
実験室用油圧プレスは、銀ナノワイヤ接合のコールドウェルディングにどのように利用できますか?低抵抗を実現する
実験室用油圧プレスが、導電性と表面平坦性を向上させるための銀ナノワイヤの室温コールドウェルディングをどのように可能にするかを学びましょう。
油圧プレスにはどのような種類の鋼材が使用されていますか?極限の力に対する高強度エンジニアリング鋼
油圧プレスに不可欠な鋼材の種類を発見:フレーム用の高張力炭素鋼とシリンダー用の硬化合金鋼。降伏強度と靭性について学びましょう。
油圧プレスの出力力をどのように計算しますか?研究室のための力増幅をマスターする
パスカルの原理を用いて油圧プレスの出力力を計算する方法を学びましょう。力増幅、面積比、および実用的な制限に関する段階的なガイドです。
Zr2Al-Gnsグリーン体のプレスに400 Mpaが必要なのはなぜですか?高密度材料の安定性を実現する
Zr2Al-GNSグリーン体の密度、摩擦の克服、および固相拡散と焼結の成功を確実にするために、400 MPaが不可欠である理由を学びましょう。
4柱油圧プレスが提供する技術的価値とは?複合粉末製造を最適化しましょう
4柱油圧プレスが複合粉末製造における粒子の再配列、酸化膜除去、気孔除去をどのように可能にするかをご覧ください。
複合膜開発においてラボ用油圧プレスが必要な理由とは? Anmbrの構造的完全性を確保する
嫌気性膜バイオリアクター(AnMBR)用の高性能複合膜のラミネート加工に、ラボ用油圧プレスが不可欠である理由をご覧ください。
実験室用高温油圧プレスはどのような機能を持っていますか?Hcl電解のためのMea製造の最適化
高温油圧プレスがMEA製造における精密な熱着と接触抵抗の最小化をどのように可能にするかを学びましょう。
Mea製造に実験室用油圧プレスが不可欠な理由とは?水素圧縮機の精度を確保する
実験室用油圧プレスが、密着性と高圧耐久性を確保することで、EHCのMEA製造をどのように最適化するかをご覧ください。
銅グラファイト複合材の製造において、実験室用油圧プレスはどのような役割を果たしますか?グリーン強度を向上させましょう。
実験室用油圧プレスが銅複合材の機械的緻密化、粒子再配列、塑性変形をどのように促進するかを学びましょう。
Llztoペレットの製造に実験室用油圧プレスはどのように使用されますか?全固体電池研究で密度93%を達成する
実験室用油圧プレスがLLZTO粉末を高密度のグリーンペレットに加工する方法を学びましょう。これは高性能全固体電池の重要なステップです。
実験室用油圧プレスは、固体電解質の性能をどのように確保しますか?バッテリー密度と導電率を最適化する
実験室用油圧プレスが気孔率を排除し、イオン輸送チャネルを確立して高性能固体電池を実現する方法を学びましょう。
全固体リチウム硫黄電池の組み立てにおいて、実験用油圧プレスはどのような役割を果たしますか?
実験用油圧プレスが、高圧による高密度化と固体電池組み立てにおける界面抵抗の低減をどのように可能にするかをご覧ください。
実験室用油圧プレスは、高エントロピーセラミックグリーンボディの品質をどのように確保し、完璧な焼結を実現しますか?
精密な実験室用油圧プレスが、焼結の成功のために高エントロピーセラミックグリーンボディの欠陥を排除し、密度を最大化する方法を学びましょう。
油圧プレスにはどのような材料が使用されていますか?高出力用途向けの主要コンポーネント
油圧プレスを構成し、巨大な力増幅を可能にする高強度鋼、作動油、精密部品についてご紹介します。
リチウム-Llzo電池には加熱式油圧プレスがどのように使用されますか?熱圧着で界面結合を最適化する
加熱式油圧プレスがリチウムのクリープを可能にし、空隙をなくして低インピーダンスのリチウム-LLZO電池界面を作成する方法を学びましょう。
鍛造プロセスの利点と限界は何ですか?強度最大化 Vs. 製造の柔軟性
鍛造プロセスの主要な利点(優れた強度と耐疲労性など)と、限界(高い工具コストや設計上の制約など)を探ります。
熱間鍛造の長所と短所は何ですか?重要な部品に優れた強度をもたらす
熱間鍛造のトレードオフを探る:優れた強度と複雑な形状 vs. 低い精度と二次加工。高応力用途に最適。
油圧プレスは電気を必要としますか?ワークショップの動力源を見つけましょう
油圧プレスが電気を必要とするか、手動で操作できるかについて学びます。力、速度、携帯性について、電動ポンプと手動ポンプを比較します。
実験室用油圧プレスが磁性粉心に800 Mpaを印加するために使用されるのはなぜですか?材料の最大密度を達成する
油圧プレスからの800 MPaの圧力が摩擦を克服し、塑性変形を誘発して高性能CoFe2O4磁性コアを作成する方法を学びましょう。
前へ
Page 6
次へ